Get the answers you need from a community of experts on IDNLearn.com. Our platform is designed to provide accurate and comprehensive answers to any questions you may have.
Sagot :
Certainly! Let's go through the steps to evaluate the integral [tex]\( \int_0^1 x^{9/10} \, dx \)[/tex].
### Step 1: Determine the antiderivative
An antiderivative of [tex]\( x^n \)[/tex], as long as [tex]\( n \neq -1 \)[/tex], is given by:
[tex]\[ \frac{x^{n+1}}{n+1} \][/tex]
### Step 2: Apply the formula to find the antiderivative
Here, the exponent [tex]\( n = \frac{9}{10} \)[/tex]. Therefore, the antiderivative of [tex]\( x^{9/10} \)[/tex] is:
[tex]\[ \frac{x^{(9/10) + 1}}{(9/10) + 1} \][/tex]
Simplify [tex]\( (9/10) + 1 \)[/tex]:
[tex]\[ (9/10) + 1 = \frac{9}{10} + \frac{10}{10} = \frac{19}{10} \][/tex]
Thus, the antiderivative becomes:
[tex]\[ \frac{x^{19/10}}{19/10} \][/tex]
### Step 3: Simplify the antiderivative
To simplify further, we can rewrite [tex]\( \frac{1}{19/10} \)[/tex] as [tex]\( \frac{10}{19} \)[/tex]:
[tex]\[ \frac{x^{19/10}}{19/10} = \frac{10}{19} x^{19/10} \][/tex]
### Step 4: Evaluate the definite integral
We now need to evaluate the definite integral from 0 to 1:
[tex]\[ \left. \frac{10}{19} x^{19/10} \right|_0^1 \][/tex]
This means we must compute the value of the antiderivative at the upper and lower bounds and subtract:
[tex]\[ \left( \frac{10}{19} \cdot 1^{19/10} \right) - \left( \frac{10}{19} \cdot 0^{19/10} \right) \][/tex]
Substitute the bounds:
[tex]\[ \left( \frac{10}{19} \cdot 1 \right) - \left( \frac{10}{19} \cdot 0 \right) \][/tex]
### Step 5: Perform the final calculations
[tex]\[ \frac{10}{19} \cdot 1 = \frac{10}{19} \][/tex]
[tex]\[ \frac{10}{19} \cdot 0 = 0 \][/tex]
So, the definite integral evaluates to:
[tex]\[ \frac{10}{19} - 0 = \frac{10}{19} \][/tex]
### Final Answer
Converting [tex]\(\frac{10}{19}\)[/tex] to its decimal form:
[tex]\[ \frac{10}{19} \approx 0.5263157894736842 \][/tex]
Therefore, the value of the definite integral [tex]\(\int_0^1 x^{9/10} \, dx\)[/tex] is approximately [tex]\( 0.5263157894736842 \)[/tex].
### Step 1: Determine the antiderivative
An antiderivative of [tex]\( x^n \)[/tex], as long as [tex]\( n \neq -1 \)[/tex], is given by:
[tex]\[ \frac{x^{n+1}}{n+1} \][/tex]
### Step 2: Apply the formula to find the antiderivative
Here, the exponent [tex]\( n = \frac{9}{10} \)[/tex]. Therefore, the antiderivative of [tex]\( x^{9/10} \)[/tex] is:
[tex]\[ \frac{x^{(9/10) + 1}}{(9/10) + 1} \][/tex]
Simplify [tex]\( (9/10) + 1 \)[/tex]:
[tex]\[ (9/10) + 1 = \frac{9}{10} + \frac{10}{10} = \frac{19}{10} \][/tex]
Thus, the antiderivative becomes:
[tex]\[ \frac{x^{19/10}}{19/10} \][/tex]
### Step 3: Simplify the antiderivative
To simplify further, we can rewrite [tex]\( \frac{1}{19/10} \)[/tex] as [tex]\( \frac{10}{19} \)[/tex]:
[tex]\[ \frac{x^{19/10}}{19/10} = \frac{10}{19} x^{19/10} \][/tex]
### Step 4: Evaluate the definite integral
We now need to evaluate the definite integral from 0 to 1:
[tex]\[ \left. \frac{10}{19} x^{19/10} \right|_0^1 \][/tex]
This means we must compute the value of the antiderivative at the upper and lower bounds and subtract:
[tex]\[ \left( \frac{10}{19} \cdot 1^{19/10} \right) - \left( \frac{10}{19} \cdot 0^{19/10} \right) \][/tex]
Substitute the bounds:
[tex]\[ \left( \frac{10}{19} \cdot 1 \right) - \left( \frac{10}{19} \cdot 0 \right) \][/tex]
### Step 5: Perform the final calculations
[tex]\[ \frac{10}{19} \cdot 1 = \frac{10}{19} \][/tex]
[tex]\[ \frac{10}{19} \cdot 0 = 0 \][/tex]
So, the definite integral evaluates to:
[tex]\[ \frac{10}{19} - 0 = \frac{10}{19} \][/tex]
### Final Answer
Converting [tex]\(\frac{10}{19}\)[/tex] to its decimal form:
[tex]\[ \frac{10}{19} \approx 0.5263157894736842 \][/tex]
Therefore, the value of the definite integral [tex]\(\int_0^1 x^{9/10} \, dx\)[/tex] is approximately [tex]\( 0.5263157894736842 \)[/tex].
Thank you for using this platform to share and learn. Don't hesitate to keep asking and answering. We value every contribution you make. For trustworthy answers, rely on IDNLearn.com. Thanks for visiting, and we look forward to assisting you again.