Whether you're a student or a professional, IDNLearn.com has answers for everyone. Get comprehensive and trustworthy answers to all your questions from our knowledgeable community members.
Sagot :
Certainly! Let's go through the steps needed to sketch the graph of the function [tex]\( f(x) = x^3 + 2x^2 - 8x \)[/tex]. We will include the end-behavior, zeroes, and intervals where the function is positive and negative.
### 1. Determine the end-behavior
To determine the end-behavior of the function, we look at the leading term, which is [tex]\( x^3 \)[/tex].
- As [tex]\( x \)[/tex] approaches infinity ([tex]\( x \to \infty \)[/tex]), [tex]\( x^3 \)[/tex] dominates and [tex]\( f(x) \)[/tex] approaches infinity: [tex]\( f(x) \to \infty \)[/tex].
- As [tex]\( x \)[/tex] approaches negative infinity ([tex]\( x \to -\infty \)[/tex]), [tex]\( x^3 \)[/tex] also dominates but with a negative sign, so [tex]\( f(x) \to -\infty \)[/tex].
Thus, we can summarize the end-behavior as follows:
- As [tex]\( x \)[/tex] approaches infinity, [tex]\( f(x) \)[/tex] approaches infinity.
- As [tex]\( x \)[/tex] approaches negative infinity, [tex]\( f(x) \)[/tex] approaches negative infinity.
### 2. Find the zeroes of the function
The zeroes (roots) of the function are the points where [tex]\( f(x) = 0 \)[/tex].
Solving [tex]\( x^3 + 2x^2 - 8x = 0 \)[/tex]:
We can factor out the common term, [tex]\( x \)[/tex]:
[tex]\[ x(x^2 + 2x - 8) = 0 \][/tex]
This gives us one zero directly:
[tex]\[ x = 0 \][/tex]
Next, we factor the quadratic [tex]\( x^2 + 2x - 8 \)[/tex]:
[tex]\[ x^2 + 2x - 8 = (x + 4)(x - 2) \][/tex]
So, the additional zeroes are:
[tex]\[ x = -4 \quad \text{and} \quad x = 2 \][/tex]
Therefore, the zeroes of [tex]\( f(x) \)[/tex] are:
[tex]\[ x = -4, \quad x = 0, \quad \text{and} \quad x = 2 \][/tex]
### 3. Determine the critical points
The critical points are found where the derivative [tex]\( f'(x) \)[/tex] is zero or undefined.
First, compute the derivative of [tex]\( f(x) \)[/tex]:
[tex]\[ f'(x) = 3x^2 + 4x - 8 \][/tex]
Set the derivative equal to zero to find the critical points:
[tex]\[ 3x^2 + 4x - 8 = 0 \][/tex]
Solving this quadratic equation, we find the critical points to be approximately:
[tex]\[ x = -2.431 \quad \text{and} \quad x = 1.097 \][/tex]
### 4. Determine where the function is positive or negative
Now, we need to determine the intervals where [tex]\( f(x) \)[/tex] is positive or negative. We use the zeroes and critical points to test the intervals:
The critical points divide the x-axis into three intervals:
- [tex]\( (-\infty, -2.431) \)[/tex]
- [tex]\( (-2.431, 1.097) \)[/tex]
- [tex]\( (1.097, \infty) \)[/tex]
Let's test a point in each interval to determine the sign of [tex]\( f(x) \)[/tex]:
- Interval [tex]\( (-\infty, -2.431) \)[/tex]:
- Choose [tex]\( x = -3 \)[/tex]
- [tex]\( f(-3) = (-3)^3 + 2(-3)^2 - 8(-3) = -27 + 18 + 24 > 0 \)[/tex] (Positive)
- Interval [tex]\( (-2.431, 1.097) \)[/tex]:
- Choose [tex]\( x = 0 \)[/tex]
- [tex]\( f(0) = 0 \)[/tex] (Positive)
- Interval [tex]\( (1.097, \infty) \)[/tex]:
- Choose [tex]\( x = 2 \)[/tex]
- [tex]\( f(2) = (2)^3 + 2(2)^2 - 8(2) = 8 + 8 - 16 = 0 \)[/tex] (Positive)
Therefore, the intervals where the function is positive and negative are:
- [tex]\( f(x) > 0 \)[/tex] on [tex]\( (-\infty, -2.431) \)[/tex]
- [tex]\( f(x) > 0 \)[/tex] on [tex]\( (-2.431, 1.097) \)[/tex]
- [tex]\( f(x) > 0 \)[/tex] on [tex]\( (1.097, \infty) \)[/tex]
### Summary of Key Points for the Graph
- End-behavior:
- As [tex]\( x \to \infty \)[/tex], [tex]\( f(x) \to \infty \)[/tex].
- As [tex]\( x \to -\infty \)[/tex], [tex]\( f(x) \to -\infty \)[/tex].
- Zeroes:
- The function has zeroes at [tex]\( x = -4, 0, \)[/tex] and [tex]\( 2 \)[/tex].
- Critical Points:
- The critical points are approximately at [tex]\( x = -2.431 \)[/tex] and [tex]\( x = 1.097 \)[/tex].
- Intervals:
- Positive on [tex]\( (-\infty, -2.431) \)[/tex]
- Positive on [tex]\( (-2.431, 1.097) \)[/tex]
- Positive on [tex]\( (1.097, \infty) \)[/tex]
Using this information, we can now sketch the graph of [tex]\( f(x) = x^3 + 2x^2 - 8x \)[/tex]. Note where the function crosses the x-axis, the directional behavior at the critical points, and the end-behavior as [tex]\( x \)[/tex] approaches [tex]\( \infty \)[/tex] and [tex]\( -\infty \)[/tex].
### 1. Determine the end-behavior
To determine the end-behavior of the function, we look at the leading term, which is [tex]\( x^3 \)[/tex].
- As [tex]\( x \)[/tex] approaches infinity ([tex]\( x \to \infty \)[/tex]), [tex]\( x^3 \)[/tex] dominates and [tex]\( f(x) \)[/tex] approaches infinity: [tex]\( f(x) \to \infty \)[/tex].
- As [tex]\( x \)[/tex] approaches negative infinity ([tex]\( x \to -\infty \)[/tex]), [tex]\( x^3 \)[/tex] also dominates but with a negative sign, so [tex]\( f(x) \to -\infty \)[/tex].
Thus, we can summarize the end-behavior as follows:
- As [tex]\( x \)[/tex] approaches infinity, [tex]\( f(x) \)[/tex] approaches infinity.
- As [tex]\( x \)[/tex] approaches negative infinity, [tex]\( f(x) \)[/tex] approaches negative infinity.
### 2. Find the zeroes of the function
The zeroes (roots) of the function are the points where [tex]\( f(x) = 0 \)[/tex].
Solving [tex]\( x^3 + 2x^2 - 8x = 0 \)[/tex]:
We can factor out the common term, [tex]\( x \)[/tex]:
[tex]\[ x(x^2 + 2x - 8) = 0 \][/tex]
This gives us one zero directly:
[tex]\[ x = 0 \][/tex]
Next, we factor the quadratic [tex]\( x^2 + 2x - 8 \)[/tex]:
[tex]\[ x^2 + 2x - 8 = (x + 4)(x - 2) \][/tex]
So, the additional zeroes are:
[tex]\[ x = -4 \quad \text{and} \quad x = 2 \][/tex]
Therefore, the zeroes of [tex]\( f(x) \)[/tex] are:
[tex]\[ x = -4, \quad x = 0, \quad \text{and} \quad x = 2 \][/tex]
### 3. Determine the critical points
The critical points are found where the derivative [tex]\( f'(x) \)[/tex] is zero or undefined.
First, compute the derivative of [tex]\( f(x) \)[/tex]:
[tex]\[ f'(x) = 3x^2 + 4x - 8 \][/tex]
Set the derivative equal to zero to find the critical points:
[tex]\[ 3x^2 + 4x - 8 = 0 \][/tex]
Solving this quadratic equation, we find the critical points to be approximately:
[tex]\[ x = -2.431 \quad \text{and} \quad x = 1.097 \][/tex]
### 4. Determine where the function is positive or negative
Now, we need to determine the intervals where [tex]\( f(x) \)[/tex] is positive or negative. We use the zeroes and critical points to test the intervals:
The critical points divide the x-axis into three intervals:
- [tex]\( (-\infty, -2.431) \)[/tex]
- [tex]\( (-2.431, 1.097) \)[/tex]
- [tex]\( (1.097, \infty) \)[/tex]
Let's test a point in each interval to determine the sign of [tex]\( f(x) \)[/tex]:
- Interval [tex]\( (-\infty, -2.431) \)[/tex]:
- Choose [tex]\( x = -3 \)[/tex]
- [tex]\( f(-3) = (-3)^3 + 2(-3)^2 - 8(-3) = -27 + 18 + 24 > 0 \)[/tex] (Positive)
- Interval [tex]\( (-2.431, 1.097) \)[/tex]:
- Choose [tex]\( x = 0 \)[/tex]
- [tex]\( f(0) = 0 \)[/tex] (Positive)
- Interval [tex]\( (1.097, \infty) \)[/tex]:
- Choose [tex]\( x = 2 \)[/tex]
- [tex]\( f(2) = (2)^3 + 2(2)^2 - 8(2) = 8 + 8 - 16 = 0 \)[/tex] (Positive)
Therefore, the intervals where the function is positive and negative are:
- [tex]\( f(x) > 0 \)[/tex] on [tex]\( (-\infty, -2.431) \)[/tex]
- [tex]\( f(x) > 0 \)[/tex] on [tex]\( (-2.431, 1.097) \)[/tex]
- [tex]\( f(x) > 0 \)[/tex] on [tex]\( (1.097, \infty) \)[/tex]
### Summary of Key Points for the Graph
- End-behavior:
- As [tex]\( x \to \infty \)[/tex], [tex]\( f(x) \to \infty \)[/tex].
- As [tex]\( x \to -\infty \)[/tex], [tex]\( f(x) \to -\infty \)[/tex].
- Zeroes:
- The function has zeroes at [tex]\( x = -4, 0, \)[/tex] and [tex]\( 2 \)[/tex].
- Critical Points:
- The critical points are approximately at [tex]\( x = -2.431 \)[/tex] and [tex]\( x = 1.097 \)[/tex].
- Intervals:
- Positive on [tex]\( (-\infty, -2.431) \)[/tex]
- Positive on [tex]\( (-2.431, 1.097) \)[/tex]
- Positive on [tex]\( (1.097, \infty) \)[/tex]
Using this information, we can now sketch the graph of [tex]\( f(x) = x^3 + 2x^2 - 8x \)[/tex]. Note where the function crosses the x-axis, the directional behavior at the critical points, and the end-behavior as [tex]\( x \)[/tex] approaches [tex]\( \infty \)[/tex] and [tex]\( -\infty \)[/tex].
We value your presence here. Keep sharing knowledge and helping others find the answers they need. This community is the perfect place to learn together. For trustworthy answers, visit IDNLearn.com. Thank you for your visit, and see you next time for more reliable solutions.