Discover new perspectives and gain insights with IDNLearn.com. Discover prompt and accurate answers from our community of experienced professionals.
Sagot :
To solve the problem, we need to analyze the given functions [tex]\( f \)[/tex] and [tex]\( g \)[/tex] and compare their characteristics based on their equations and properties.
### For Function [tex]\( f(x) \)[/tex]:
The equation of [tex]\( f(x) \)[/tex] is given by:
[tex]\[ f(x) = x^2 - 4x + 3 \][/tex]
First, let's find the [tex]\( y \)[/tex]-intercept of [tex]\( f \)[/tex]. The [tex]\( y \)[/tex]-intercept occurs when [tex]\( x = 0 \)[/tex]:
[tex]\[ f(0) = 0^2 - 4(0) + 3 = 3 \][/tex]
Thus, the [tex]\( y \)[/tex]-intercept of function [tex]\( f \)[/tex] is [tex]\( 3 \)[/tex].
Next, we determine the vertex of the parabola defined by [tex]\( f(x) \)[/tex]. For a quadratic equation in the form [tex]\( ax^2 + bx + c \)[/tex], the [tex]\( x \)[/tex]-coordinate of the vertex is given by:
[tex]\[ x = -\frac{b}{2a} \][/tex]
Here, [tex]\( a = 1 \)[/tex] and [tex]\( b = -4 \)[/tex]:
[tex]\[ x = -\frac{-4}{2(1)} = 2 \][/tex]
Substituting [tex]\( x = 2 \)[/tex] back into the function to find the [tex]\( y \)[/tex]-coordinate:
[tex]\[ f(2) = 2^2 - 4(2) + 3 = 4 - 8 + 3 = -1 \][/tex]
Thus, the vertex of [tex]\( f \)[/tex] is [tex]\( (2, -1) \)[/tex], which represents the minimum point on the downward parabola.
### For Function [tex]\( g(x) \)[/tex]:
The function [tex]\( g \)[/tex] is described as having a vertex at [tex]\( (1, 3) \)[/tex] and opens downwards. Therefore, its general form can be expressed as:
[tex]\[ g(x) = -a(x - 1)^2 + 3 \][/tex]
where [tex]\( a \)[/tex] is a positive constant.
To find the [tex]\( y \)[/tex]-intercept of [tex]\( g \)[/tex], we evaluate [tex]\( g(0) \)[/tex]:
[tex]\[ g(0) = -a(0 - 1)^2 + 3 \][/tex]
[tex]\[ g(0) = -a(1) + 3 \][/tex]
[tex]\[ g(0) = -a + 3 \][/tex]
Since [tex]\( a \)[/tex] is positive, [tex]\( -a + 3 \)[/tex] will always be less than 3.
### Comparing the [tex]\( y \)[/tex]-intercepts:
The [tex]\( y \)[/tex]-intercept of function [tex]\( f \)[/tex] is [tex]\( 3 \)[/tex], and the [tex]\( y \)[/tex]-intercept of function [tex]\( g \)[/tex] computed as [tex]\(-a + 3 \)[/tex], where [tex]\( a \)[/tex] is a positive constant, making the [tex]\( y \)[/tex]-intercept of [tex]\( g \)[/tex] less than [tex]\( 3 \)[/tex].
### Conclusion:
Given the comparisons:
- The [tex]\( y \)[/tex]-intercept of [tex]\( f \)[/tex] is [tex]\( 3 \)[/tex].
- The [tex]\( y \)[/tex]-intercept of [tex]\( g \)[/tex] is [tex]\( -a + 3 \)[/tex], where [tex]\( a \)[/tex] is positive, thus it is less than [tex]\( 3 \)[/tex].
Therefore, the statement that the [tex]\( y \)[/tex]-intercept of function [tex]\( f \)[/tex] is greater than the [tex]\( y \)[/tex]-intercept of function [tex]\( g \)[/tex] is true.
So, the correct answer is:
[tex]\[ \boxed{B} \][/tex]
### For Function [tex]\( f(x) \)[/tex]:
The equation of [tex]\( f(x) \)[/tex] is given by:
[tex]\[ f(x) = x^2 - 4x + 3 \][/tex]
First, let's find the [tex]\( y \)[/tex]-intercept of [tex]\( f \)[/tex]. The [tex]\( y \)[/tex]-intercept occurs when [tex]\( x = 0 \)[/tex]:
[tex]\[ f(0) = 0^2 - 4(0) + 3 = 3 \][/tex]
Thus, the [tex]\( y \)[/tex]-intercept of function [tex]\( f \)[/tex] is [tex]\( 3 \)[/tex].
Next, we determine the vertex of the parabola defined by [tex]\( f(x) \)[/tex]. For a quadratic equation in the form [tex]\( ax^2 + bx + c \)[/tex], the [tex]\( x \)[/tex]-coordinate of the vertex is given by:
[tex]\[ x = -\frac{b}{2a} \][/tex]
Here, [tex]\( a = 1 \)[/tex] and [tex]\( b = -4 \)[/tex]:
[tex]\[ x = -\frac{-4}{2(1)} = 2 \][/tex]
Substituting [tex]\( x = 2 \)[/tex] back into the function to find the [tex]\( y \)[/tex]-coordinate:
[tex]\[ f(2) = 2^2 - 4(2) + 3 = 4 - 8 + 3 = -1 \][/tex]
Thus, the vertex of [tex]\( f \)[/tex] is [tex]\( (2, -1) \)[/tex], which represents the minimum point on the downward parabola.
### For Function [tex]\( g(x) \)[/tex]:
The function [tex]\( g \)[/tex] is described as having a vertex at [tex]\( (1, 3) \)[/tex] and opens downwards. Therefore, its general form can be expressed as:
[tex]\[ g(x) = -a(x - 1)^2 + 3 \][/tex]
where [tex]\( a \)[/tex] is a positive constant.
To find the [tex]\( y \)[/tex]-intercept of [tex]\( g \)[/tex], we evaluate [tex]\( g(0) \)[/tex]:
[tex]\[ g(0) = -a(0 - 1)^2 + 3 \][/tex]
[tex]\[ g(0) = -a(1) + 3 \][/tex]
[tex]\[ g(0) = -a + 3 \][/tex]
Since [tex]\( a \)[/tex] is positive, [tex]\( -a + 3 \)[/tex] will always be less than 3.
### Comparing the [tex]\( y \)[/tex]-intercepts:
The [tex]\( y \)[/tex]-intercept of function [tex]\( f \)[/tex] is [tex]\( 3 \)[/tex], and the [tex]\( y \)[/tex]-intercept of function [tex]\( g \)[/tex] computed as [tex]\(-a + 3 \)[/tex], where [tex]\( a \)[/tex] is a positive constant, making the [tex]\( y \)[/tex]-intercept of [tex]\( g \)[/tex] less than [tex]\( 3 \)[/tex].
### Conclusion:
Given the comparisons:
- The [tex]\( y \)[/tex]-intercept of [tex]\( f \)[/tex] is [tex]\( 3 \)[/tex].
- The [tex]\( y \)[/tex]-intercept of [tex]\( g \)[/tex] is [tex]\( -a + 3 \)[/tex], where [tex]\( a \)[/tex] is positive, thus it is less than [tex]\( 3 \)[/tex].
Therefore, the statement that the [tex]\( y \)[/tex]-intercept of function [tex]\( f \)[/tex] is greater than the [tex]\( y \)[/tex]-intercept of function [tex]\( g \)[/tex] is true.
So, the correct answer is:
[tex]\[ \boxed{B} \][/tex]
Thank you for using this platform to share and learn. Keep asking and answering. We appreciate every contribution you make. For trustworthy answers, rely on IDNLearn.com. Thanks for visiting, and we look forward to assisting you again.