IDNLearn.com offers expert insights and community wisdom to answer your queries. Join our community to receive timely and reliable responses to your questions from knowledgeable professionals.

The value of [tex]$E^{\circ}_{\text{cell}}$[/tex] for the reaction:

[tex]2 \text{Cr}^{3+}(aq) + 6 \text{Hg}(l) \rightarrow 2 \text{Cr}(s) + 3 \text{Hg}_2^{2+}(aq)[/tex]

is 1.59 V. Calculate [tex]$\Delta G^{\circ}$[/tex] for the reaction.

A. [tex]-460 \text{ kJ}[/tex]
B. [tex]-921 \text{ kJ}[/tex]
C. None of the other choices are correct.
D. [tex]-307 \text{ kJ}[/tex]
E. [tex]-767 \text{ kJ}[/tex]


Sagot :

To find the standard Gibbs free energy change ([tex]\(\Delta G^{\circ}\)[/tex]) for the reaction:

[tex]\[ 2 Cr^{3+}(aq) + 6 Hg(l) \rightarrow 2 Cr(s) + 3 Hg_2^{2+}(aq) \][/tex]

we can use the relationship between the standard Gibbs free energy change [tex]\(\Delta G^{\circ}\)[/tex] and the standard cell potential [tex]\(E^{\circ}\)[/tex]:

[tex]\[ \Delta G^{\circ} = -nFE^{\circ} \][/tex]

where:
- [tex]\( \Delta G^{\circ} \)[/tex] is the standard Gibbs free energy change,
- [tex]\( n \)[/tex] is the number of moles of electrons transferred in the reaction,
- [tex]\( F \)[/tex] is Faraday's constant ([tex]\( F = 96485 \, \text{C/mol} \)[/tex]),
- [tex]\( E^{\circ} \)[/tex] is the standard cell potential.

### Step-by-Step Solution:

1. Determine the number of electrons transferred ([tex]\( n \)[/tex]):
In the reaction, the change in oxidation state for chromium and mercury indicates the number of electrons transferred.

[tex]\[ 2 Cr^{3+} + 6 e^- \rightarrow 2 Cr \quad \text{(each Cr^{3+} gains 3 electrons, 2 Cr^{3+} gain 6 electrons)} \][/tex]

Therefore, [tex]\( n = 6 \)[/tex] electrons are transferred.

2. Given Data:
- Standard cell potential, [tex]\(E^{\circ}\)[/tex] = 1.59 V
- Faraday's constant, [tex]\(F = 96485 \, \text{C/mol}\)[/tex]

3. Substitute the values into the formula:

[tex]\[ \Delta G^{\circ} = -n \times F \times E^{\circ} \][/tex]

[tex]\[ \Delta G^{\circ} = -6 \times 96485 \, \text{C/mol} \times 1.59 \, \text{V} \][/tex]

4. Calculate the change in Gibbs free energy ([tex]\(\Delta G^{\circ}\)[/tex]):

[tex]\[ \Delta G^{\circ} = -6 \times 96485 \times 1.59 \][/tex]

[tex]\[ \Delta G^{\circ} = -920466.9 \, \text{J/mol} \][/tex]

5. Convert Joules to Kilojoules (since 1 kJ = 1000 J):

[tex]\[ \Delta G^{\circ} = \frac{-920466.9}{1000} \, \text{kJ/mol} \][/tex]

[tex]\[ \Delta G^{\circ} = -920.4669 \, \text{kJ/mol} \][/tex]

6. Conclusion:

The closest value to [tex]\(\Delta G^{\circ} = -920.4669 \, \text{kJ/mol}\)[/tex] from the given options is:

[tex]\[ \boxed{-921 \, \text{kJ}} \][/tex]