Get the information you need quickly and easily with IDNLearn.com. Ask your questions and receive prompt, detailed answers from our experienced and knowledgeable community members.
Sagot :
Certainly! Let's calculate the mass of the radioactive element that remains after 150 years, given the half-life of 45 years and an initial mass of 29 grams. The formula to determine the remaining mass [tex]\( y \)[/tex] after [tex]\( t \)[/tex] years is:
[tex]\[ y = 29 \left( \frac{1}{2} \right)^{\frac{t}{45}} \][/tex]
In this problem, [tex]\( t = 150 \)[/tex] years. We need to substitute the values into the formula and perform the calculations step-by-step.
1. Identify the given values:
- Initial mass, [tex]\( y_0 = 29 \)[/tex] grams.
- Half-life, [tex]\( \text{half-life} = 45 \)[/tex] years.
- Time, [tex]\( t = 150 \)[/tex] years.
2. Substitute the values into the formula:
[tex]\[ y = 29 \left( \frac{1}{2} \right)^{\frac{150}{45}} \][/tex]
3. Simplify the exponent:
[tex]\[ \frac{150}{45} = \frac{150 \div 15}{45 \div 15} = \frac{10}{3} \][/tex]
So we rewrite the formula as:
[tex]\[ y = 29 \left( \frac{1}{2} \right)^{\frac{10}{3}} \][/tex]
4. Calculate the exponentiation:
[tex]\[ \left( \frac{1}{2} \right)^{\frac{10}{3}} \approx 0.099212565748012 \][/tex]
5. Multiply by the initial mass:
[tex]\[ y = 29 \times 0.099212565748012 \approx 2.877164406692361 \][/tex]
So, the remaining mass of the radioactive element after 150 years is approximately [tex]\( 2.877164406692361 \)[/tex] grams.
6. Round the result to three decimal places:
[tex]\[ y \approx 2.877 \][/tex]
Therefore, the remaining mass after 150 years is approximately [tex]\( 2.877 \)[/tex] grams.
[tex]\[ y = 29 \left( \frac{1}{2} \right)^{\frac{t}{45}} \][/tex]
In this problem, [tex]\( t = 150 \)[/tex] years. We need to substitute the values into the formula and perform the calculations step-by-step.
1. Identify the given values:
- Initial mass, [tex]\( y_0 = 29 \)[/tex] grams.
- Half-life, [tex]\( \text{half-life} = 45 \)[/tex] years.
- Time, [tex]\( t = 150 \)[/tex] years.
2. Substitute the values into the formula:
[tex]\[ y = 29 \left( \frac{1}{2} \right)^{\frac{150}{45}} \][/tex]
3. Simplify the exponent:
[tex]\[ \frac{150}{45} = \frac{150 \div 15}{45 \div 15} = \frac{10}{3} \][/tex]
So we rewrite the formula as:
[tex]\[ y = 29 \left( \frac{1}{2} \right)^{\frac{10}{3}} \][/tex]
4. Calculate the exponentiation:
[tex]\[ \left( \frac{1}{2} \right)^{\frac{10}{3}} \approx 0.099212565748012 \][/tex]
5. Multiply by the initial mass:
[tex]\[ y = 29 \times 0.099212565748012 \approx 2.877164406692361 \][/tex]
So, the remaining mass of the radioactive element after 150 years is approximately [tex]\( 2.877164406692361 \)[/tex] grams.
6. Round the result to three decimal places:
[tex]\[ y \approx 2.877 \][/tex]
Therefore, the remaining mass after 150 years is approximately [tex]\( 2.877 \)[/tex] grams.
We value your participation in this forum. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. Thanks for visiting IDNLearn.com. We’re dedicated to providing clear answers, so visit us again for more helpful information.