Get expert insights and community support for your questions on IDNLearn.com. Find in-depth and trustworthy answers to all your questions from our experienced community members.
Sagot :
To determine the concentration of [tex]\(\left[ H_3O^+ \right]\)[/tex] and the pH of the buffer solution consisting of [tex]\(0.32 \, \text{M} \, \text{HNO}_2\)[/tex] and [tex]\(0.66 \, \text{M} \, \text{KNO}_2\)[/tex], we need to follow a detailed step-by-step approach.
### Step-by-Step Solution
1. Identify the given information:
- The concentration of [tex]\(\text{HNO}_2\)[/tex] (a weak acid) is [tex]\(0.32 \, \text{M}\)[/tex].
- The concentration of [tex]\(\text{KNO}_2\)[/tex] (which provides the conjugate base [tex]\(\text{NO}_2^-\)[/tex]) is [tex]\(0.66 \, \text{M}\)[/tex].
- The acid dissociation constant [tex]\(K_a\)[/tex] for [tex]\(\text{HNO}_2\)[/tex] at [tex]\(25^{\circ} \text{C}\)[/tex] is [tex]\(4.5 \times 10^{-4}\)[/tex].
2. Use the Henderson-Hasselbalch equation:
The Henderson-Hasselbalch equation for a buffer solution is:
[tex]\[ \text{pH} = \text{p}K_a + \log\left( \frac{[\text{A}^-]}{[\text{HA}]} \right) \][/tex]
where:
- [tex]\([\text{HA}]\)[/tex] is the concentration of the weak acid [tex]\(\text{HNO}_2\)[/tex].
- [tex]\([\text{A}^-]\)[/tex] is the concentration of the conjugate base [tex]\(\text{NO}_2^-\)[/tex].
- [tex]\(\text{p}K_a\)[/tex] is the negative logarithm of the acid dissociation constant: [tex]\(\text{p}K_a = -\log{K_a}\)[/tex].
3. Calculate [tex]\(\text{p}K_a\)[/tex]:
[tex]\[ \text{p}K_a = -\log(4.5 \times 10^{-4}) \approx 3.35 \][/tex]
4. Calculate the [tex]\(\text{pH}\)[/tex] of the buffer:
[tex]\[ \text{pH} = 3.35 + \log\left( \frac{0.66}{0.32} \right) \][/tex]
Calculate the ratio:
[tex]\[ \frac{0.66}{0.32} \approx 2.0625 \][/tex]
Take the logarithm:
[tex]\[ \log(2.0625) \approx 0.314 \][/tex]
Now, sum this with [tex]\(\text{p}K_a\)[/tex]:
[tex]\[ \text{pH} = 3.35 + 0.314 \approx 3.66 \][/tex]
5. Determine the [tex]\(\left[ H_3O^+ \right]\)[/tex]:
The relationship between [tex]\(\left[ H_3O^+ \right]\)[/tex] and pH is given by:
[tex]\[ \text{pH} = -\log[\text{H}_3\text{O}^+] \][/tex]
Rearrange to solve for [tex]\(\left[ H_3O^+ \right]\)[/tex]:
[tex]\[ [\text{H}_3\text{O}^+] = 10^{-\text{pH}} \][/tex]
Substitute the pH value:
[tex]\[ [\text{H}_3\text{O}^+] = 10^{-3.66} \approx 2.18 \times 10^{-4} \, \text{M} \][/tex]
### Final Answers
- The concentration of [tex]\(\left[ H_3O^+ \right]\)[/tex] is [tex]\(2.18 \times 10^{-4} \, \text{M}\)[/tex].
- The pH of the buffer solution is approximately [tex]\(3.66\)[/tex].
So, the answers with the correct significant figures are:
[tex]\[ \left[ H_3O^+ \right] = 2.18 \times 10^{-4} \, \text{M} \][/tex]
[tex]\[ \text{pH} \approx 3.66 \][/tex]
### Step-by-Step Solution
1. Identify the given information:
- The concentration of [tex]\(\text{HNO}_2\)[/tex] (a weak acid) is [tex]\(0.32 \, \text{M}\)[/tex].
- The concentration of [tex]\(\text{KNO}_2\)[/tex] (which provides the conjugate base [tex]\(\text{NO}_2^-\)[/tex]) is [tex]\(0.66 \, \text{M}\)[/tex].
- The acid dissociation constant [tex]\(K_a\)[/tex] for [tex]\(\text{HNO}_2\)[/tex] at [tex]\(25^{\circ} \text{C}\)[/tex] is [tex]\(4.5 \times 10^{-4}\)[/tex].
2. Use the Henderson-Hasselbalch equation:
The Henderson-Hasselbalch equation for a buffer solution is:
[tex]\[ \text{pH} = \text{p}K_a + \log\left( \frac{[\text{A}^-]}{[\text{HA}]} \right) \][/tex]
where:
- [tex]\([\text{HA}]\)[/tex] is the concentration of the weak acid [tex]\(\text{HNO}_2\)[/tex].
- [tex]\([\text{A}^-]\)[/tex] is the concentration of the conjugate base [tex]\(\text{NO}_2^-\)[/tex].
- [tex]\(\text{p}K_a\)[/tex] is the negative logarithm of the acid dissociation constant: [tex]\(\text{p}K_a = -\log{K_a}\)[/tex].
3. Calculate [tex]\(\text{p}K_a\)[/tex]:
[tex]\[ \text{p}K_a = -\log(4.5 \times 10^{-4}) \approx 3.35 \][/tex]
4. Calculate the [tex]\(\text{pH}\)[/tex] of the buffer:
[tex]\[ \text{pH} = 3.35 + \log\left( \frac{0.66}{0.32} \right) \][/tex]
Calculate the ratio:
[tex]\[ \frac{0.66}{0.32} \approx 2.0625 \][/tex]
Take the logarithm:
[tex]\[ \log(2.0625) \approx 0.314 \][/tex]
Now, sum this with [tex]\(\text{p}K_a\)[/tex]:
[tex]\[ \text{pH} = 3.35 + 0.314 \approx 3.66 \][/tex]
5. Determine the [tex]\(\left[ H_3O^+ \right]\)[/tex]:
The relationship between [tex]\(\left[ H_3O^+ \right]\)[/tex] and pH is given by:
[tex]\[ \text{pH} = -\log[\text{H}_3\text{O}^+] \][/tex]
Rearrange to solve for [tex]\(\left[ H_3O^+ \right]\)[/tex]:
[tex]\[ [\text{H}_3\text{O}^+] = 10^{-\text{pH}} \][/tex]
Substitute the pH value:
[tex]\[ [\text{H}_3\text{O}^+] = 10^{-3.66} \approx 2.18 \times 10^{-4} \, \text{M} \][/tex]
### Final Answers
- The concentration of [tex]\(\left[ H_3O^+ \right]\)[/tex] is [tex]\(2.18 \times 10^{-4} \, \text{M}\)[/tex].
- The pH of the buffer solution is approximately [tex]\(3.66\)[/tex].
So, the answers with the correct significant figures are:
[tex]\[ \left[ H_3O^+ \right] = 2.18 \times 10^{-4} \, \text{M} \][/tex]
[tex]\[ \text{pH} \approx 3.66 \][/tex]
Thank you for using this platform to share and learn. Keep asking and answering. We appreciate every contribution you make. Thank you for choosing IDNLearn.com. We’re committed to providing accurate answers, so visit us again soon.