Discover a wealth of information and get your questions answered on IDNLearn.com. Our experts provide timely, comprehensive responses to ensure you have the information you need.
Sagot :
To determine the force of gravity between Earth and Jupiter, we apply Newton's law of universal gravitation. This law states that the gravitational force [tex]\( F \)[/tex] between two masses [tex]\( m_1 \)[/tex] and [tex]\( m_2 \)[/tex] separated by a distance [tex]\( r \)[/tex] is given by:
[tex]\[ F = G \cdot \frac{m_1 \cdot m_2}{r^2} \][/tex]
where [tex]\( G \)[/tex] is the gravitational constant, approximately equal to [tex]\( 6.67430 \times 10^{-11} \, \text{m}^3 \text{kg}^{-1} \text{s}^{-2} \)[/tex].
Given:
- Mass of Earth, [tex]\( m_1 = 6.0 \times 10^{24} \, \text{kg} \)[/tex]
- Mass of Jupiter, [tex]\( m_2 = 1.901 \times 10^{27} \, \text{kg} \)[/tex]
- Distance between Earth and Jupiter, [tex]\( r = 7.5 \times 10^{11} \, \text{m} \)[/tex]
Plugging these values into the equation for the gravitational force, we have:
[tex]\[ F = 6.67430 \times 10^{-11} \cdot \frac{(6.0 \times 10^{24}) \cdot (1.901 \times 10^{27})}{(7.5 \times 10^{11})^2} \][/tex]
First, calculate the denominator [tex]\( r^2 \)[/tex]:
[tex]\[ (7.5 \times 10^{11})^2 = 56.25 \times 10^{22} \][/tex]
Next, multiply the masses:
[tex]\[ (6.0 \times 10^{24}) \cdot (1.901 \times 10^{27}) = 1.1406 \times 10^{52} \][/tex]
Now, calculate the gravitational force:
[tex]\[ F = 6.67430 \times 10^{-11} \cdot \frac{1.1406 \times 10^{52}}{56.25 \times 10^{22}} \][/tex]
Simplify the fraction inside the equation:
[tex]\[ \frac{1.1406 \times 10^{52}}{56.25 \times 10^{22}} = 2.027 \times 10^{29} \][/tex]
Finally, multiply by [tex]\( G \)[/tex]:
[tex]\[ F = 6.67430 \times 10^{-11} \cdot 2.027 \times 10^{29} = 1.3533700586666665 \times 10^{18} \, \text{N} \][/tex]
So, the gravitational force between Earth and Jupiter is approximately [tex]\( 1.353 \times 10^{18} \)[/tex] newtons.
Therefore, the correct answer is:
C. [tex]\( 1352 \times 10^{18} \)[/tex] newtons
[tex]\[ F = G \cdot \frac{m_1 \cdot m_2}{r^2} \][/tex]
where [tex]\( G \)[/tex] is the gravitational constant, approximately equal to [tex]\( 6.67430 \times 10^{-11} \, \text{m}^3 \text{kg}^{-1} \text{s}^{-2} \)[/tex].
Given:
- Mass of Earth, [tex]\( m_1 = 6.0 \times 10^{24} \, \text{kg} \)[/tex]
- Mass of Jupiter, [tex]\( m_2 = 1.901 \times 10^{27} \, \text{kg} \)[/tex]
- Distance between Earth and Jupiter, [tex]\( r = 7.5 \times 10^{11} \, \text{m} \)[/tex]
Plugging these values into the equation for the gravitational force, we have:
[tex]\[ F = 6.67430 \times 10^{-11} \cdot \frac{(6.0 \times 10^{24}) \cdot (1.901 \times 10^{27})}{(7.5 \times 10^{11})^2} \][/tex]
First, calculate the denominator [tex]\( r^2 \)[/tex]:
[tex]\[ (7.5 \times 10^{11})^2 = 56.25 \times 10^{22} \][/tex]
Next, multiply the masses:
[tex]\[ (6.0 \times 10^{24}) \cdot (1.901 \times 10^{27}) = 1.1406 \times 10^{52} \][/tex]
Now, calculate the gravitational force:
[tex]\[ F = 6.67430 \times 10^{-11} \cdot \frac{1.1406 \times 10^{52}}{56.25 \times 10^{22}} \][/tex]
Simplify the fraction inside the equation:
[tex]\[ \frac{1.1406 \times 10^{52}}{56.25 \times 10^{22}} = 2.027 \times 10^{29} \][/tex]
Finally, multiply by [tex]\( G \)[/tex]:
[tex]\[ F = 6.67430 \times 10^{-11} \cdot 2.027 \times 10^{29} = 1.3533700586666665 \times 10^{18} \, \text{N} \][/tex]
So, the gravitational force between Earth and Jupiter is approximately [tex]\( 1.353 \times 10^{18} \)[/tex] newtons.
Therefore, the correct answer is:
C. [tex]\( 1352 \times 10^{18} \)[/tex] newtons
Thank you for contributing to our discussion. Don't forget to check back for new answers. Keep asking, answering, and sharing useful information. For dependable answers, trust IDNLearn.com. Thank you for visiting, and we look forward to helping you again soon.