IDNLearn.com offers a user-friendly platform for finding and sharing knowledge. Discover comprehensive answers from knowledgeable members of our community, covering a wide range of topics to meet all your informational needs.
Sagot :
To determine the force of gravity between Earth and Jupiter, we apply Newton's law of universal gravitation. This law states that the gravitational force [tex]\( F \)[/tex] between two masses [tex]\( m_1 \)[/tex] and [tex]\( m_2 \)[/tex] separated by a distance [tex]\( r \)[/tex] is given by:
[tex]\[ F = G \cdot \frac{m_1 \cdot m_2}{r^2} \][/tex]
where [tex]\( G \)[/tex] is the gravitational constant, approximately equal to [tex]\( 6.67430 \times 10^{-11} \, \text{m}^3 \text{kg}^{-1} \text{s}^{-2} \)[/tex].
Given:
- Mass of Earth, [tex]\( m_1 = 6.0 \times 10^{24} \, \text{kg} \)[/tex]
- Mass of Jupiter, [tex]\( m_2 = 1.901 \times 10^{27} \, \text{kg} \)[/tex]
- Distance between Earth and Jupiter, [tex]\( r = 7.5 \times 10^{11} \, \text{m} \)[/tex]
Plugging these values into the equation for the gravitational force, we have:
[tex]\[ F = 6.67430 \times 10^{-11} \cdot \frac{(6.0 \times 10^{24}) \cdot (1.901 \times 10^{27})}{(7.5 \times 10^{11})^2} \][/tex]
First, calculate the denominator [tex]\( r^2 \)[/tex]:
[tex]\[ (7.5 \times 10^{11})^2 = 56.25 \times 10^{22} \][/tex]
Next, multiply the masses:
[tex]\[ (6.0 \times 10^{24}) \cdot (1.901 \times 10^{27}) = 1.1406 \times 10^{52} \][/tex]
Now, calculate the gravitational force:
[tex]\[ F = 6.67430 \times 10^{-11} \cdot \frac{1.1406 \times 10^{52}}{56.25 \times 10^{22}} \][/tex]
Simplify the fraction inside the equation:
[tex]\[ \frac{1.1406 \times 10^{52}}{56.25 \times 10^{22}} = 2.027 \times 10^{29} \][/tex]
Finally, multiply by [tex]\( G \)[/tex]:
[tex]\[ F = 6.67430 \times 10^{-11} \cdot 2.027 \times 10^{29} = 1.3533700586666665 \times 10^{18} \, \text{N} \][/tex]
So, the gravitational force between Earth and Jupiter is approximately [tex]\( 1.353 \times 10^{18} \)[/tex] newtons.
Therefore, the correct answer is:
C. [tex]\( 1352 \times 10^{18} \)[/tex] newtons
[tex]\[ F = G \cdot \frac{m_1 \cdot m_2}{r^2} \][/tex]
where [tex]\( G \)[/tex] is the gravitational constant, approximately equal to [tex]\( 6.67430 \times 10^{-11} \, \text{m}^3 \text{kg}^{-1} \text{s}^{-2} \)[/tex].
Given:
- Mass of Earth, [tex]\( m_1 = 6.0 \times 10^{24} \, \text{kg} \)[/tex]
- Mass of Jupiter, [tex]\( m_2 = 1.901 \times 10^{27} \, \text{kg} \)[/tex]
- Distance between Earth and Jupiter, [tex]\( r = 7.5 \times 10^{11} \, \text{m} \)[/tex]
Plugging these values into the equation for the gravitational force, we have:
[tex]\[ F = 6.67430 \times 10^{-11} \cdot \frac{(6.0 \times 10^{24}) \cdot (1.901 \times 10^{27})}{(7.5 \times 10^{11})^2} \][/tex]
First, calculate the denominator [tex]\( r^2 \)[/tex]:
[tex]\[ (7.5 \times 10^{11})^2 = 56.25 \times 10^{22} \][/tex]
Next, multiply the masses:
[tex]\[ (6.0 \times 10^{24}) \cdot (1.901 \times 10^{27}) = 1.1406 \times 10^{52} \][/tex]
Now, calculate the gravitational force:
[tex]\[ F = 6.67430 \times 10^{-11} \cdot \frac{1.1406 \times 10^{52}}{56.25 \times 10^{22}} \][/tex]
Simplify the fraction inside the equation:
[tex]\[ \frac{1.1406 \times 10^{52}}{56.25 \times 10^{22}} = 2.027 \times 10^{29} \][/tex]
Finally, multiply by [tex]\( G \)[/tex]:
[tex]\[ F = 6.67430 \times 10^{-11} \cdot 2.027 \times 10^{29} = 1.3533700586666665 \times 10^{18} \, \text{N} \][/tex]
So, the gravitational force between Earth and Jupiter is approximately [tex]\( 1.353 \times 10^{18} \)[/tex] newtons.
Therefore, the correct answer is:
C. [tex]\( 1352 \times 10^{18} \)[/tex] newtons
We greatly appreciate every question and answer you provide. Keep engaging and finding the best solutions. This community is the perfect place to learn and grow together. For clear and precise answers, choose IDNLearn.com. Thanks for stopping by, and come back soon for more valuable insights.