Get comprehensive solutions to your problems with IDNLearn.com. Discover prompt and accurate answers from our community of experienced professionals.
Sagot :
To find the characteristic equation and the eigenvalues, along with a basis for each of the corresponding eigenspaces, let's follow these steps:
### (a) Finding the Characteristic Equation
The characteristic equation of a matrix [tex]\( A \)[/tex] is determined by the determinant of [tex]\( A - \lambda I \)[/tex], where [tex]\( I \)[/tex] is the identity matrix and [tex]\( \lambda \)[/tex] represents the eigenvalues.
Given matrix [tex]\( A \)[/tex]:
[tex]\[ A = \begin{pmatrix} 1 & -\frac{1}{2} \\ \frac{3}{2} & -1 \end{pmatrix} \][/tex]
First, form [tex]\( A - \lambda I \)[/tex]:
[tex]\[ A - \lambda I = \begin{pmatrix} 1 - \lambda & -\frac{1}{2} \\ \frac{3}{2} & -1 - \lambda \end{pmatrix} \][/tex]
Next, calculate the determinant:
[tex]\[ \text{det}(A - \lambda I) = \begin{vmatrix} 1 - \lambda & -\frac{1}{2} \\ \frac{3}{2} & -1 - \lambda \end{vmatrix} \][/tex]
Using the determinant formula for a [tex]\( 2 \times 2 \)[/tex] matrix:
[tex]\[ \begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc \][/tex]
We get:
[tex]\[ (1 - \lambda)(-1 - \lambda) - \left( -\frac{1}{2} \times \frac{3}{2} \right) \][/tex]
Expanding and simplifying:
[tex]\[ (1 - \lambda)(-1 - \lambda) + \frac{3}{4} = (\lambda^2 - 0.25) \][/tex]
Setting the determinant to equal zero gives the characteristic equation:
[tex]\[ \lambda^2 - 0.25 = 0 \][/tex]
So the characteristic equation is:
[tex]\[ \boxed{\lambda^2 - 0.25 = 0} \][/tex]
### (b) Finding the Eigenvalues
To find the eigenvalues, solve the characteristic equation:
[tex]\[ \lambda^2 - 0.25 = 0 \][/tex]
This can be factored into:
[tex]\[ (\lambda + 0.5)(\lambda - 0.5) = 0 \][/tex]
Therefore, the eigenvalues are:
[tex]\[ \lambda = -0.5, \, 0.5 \][/tex]
Ordering them from smallest to largest, we have:
[tex]\[ (\lambda_1, \lambda_2) = \boxed{(-0.5, 0.5)} \][/tex]
### Finding the Eigenvectors
1. For [tex]\(\lambda = -0.5\)[/tex]:
The matrix [tex]\( A - (-0.5)I = A + 0.5I \)[/tex]:
[tex]\[ \begin{pmatrix} 1 + 0.5 & -\frac{1}{2} \\ \frac{3}{2} & -1 + 0.5 \end{pmatrix} = \begin{pmatrix} 1.5 & -0.5 \\ 1.5 & -0.5 \end{pmatrix} \][/tex]
To find the eigenvector, solve:
[tex]\[ \begin{pmatrix} 1.5 & -0.5 \\ 1.5 & -0.5 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \][/tex]
From the equations:
[tex]\[ 1.5 x_1 - 0.5 x_2 = 0 \][/tex]
Solve for [tex]\( x_2 \)[/tex]:
[tex]\[ x_2 = 3 x_1 \][/tex]
Thus, a basis for the eigenspace corresponding to [tex]\(\lambda = -0.5\)[/tex] is:
[tex]\[ \boxed{\begin{pmatrix} 0.3333333333333333 \\ 1.0 \end{pmatrix}} \][/tex]
2. For [tex]\(\lambda = 0.5\)[/tex]:
The matrix [tex]\( A - 0.5I \)[/tex]:
[tex]\[ \begin{pmatrix} 1 - 0.5 & -\frac{1}{2} \\ \frac{3}{2} & -1 - 0.5 \end{pmatrix} = \begin{pmatrix} 0.5 & -0.5 \\ 1.5 & -1.5 \end{pmatrix} \][/tex]
To find the eigenvector, solve:
[tex]\[ \begin{pmatrix} 0.5 & -0.5 \\ 1.5 & -1.5 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \][/tex]
From the equations:
[tex]\[ 0.5 y_1 - 0.5 y_2 = 0 \][/tex]
Solve for [tex]\( y_2 \)[/tex]:
[tex]\[ y_2 = y_1 \][/tex]
Thus, a basis for the eigenspace corresponding to [tex]\(\lambda = 0.5\)[/tex] is:
[tex]\[ \boxed{\begin{pmatrix} 1.0 \\ 1.0 \end{pmatrix}} \][/tex]
### (a) Finding the Characteristic Equation
The characteristic equation of a matrix [tex]\( A \)[/tex] is determined by the determinant of [tex]\( A - \lambda I \)[/tex], where [tex]\( I \)[/tex] is the identity matrix and [tex]\( \lambda \)[/tex] represents the eigenvalues.
Given matrix [tex]\( A \)[/tex]:
[tex]\[ A = \begin{pmatrix} 1 & -\frac{1}{2} \\ \frac{3}{2} & -1 \end{pmatrix} \][/tex]
First, form [tex]\( A - \lambda I \)[/tex]:
[tex]\[ A - \lambda I = \begin{pmatrix} 1 - \lambda & -\frac{1}{2} \\ \frac{3}{2} & -1 - \lambda \end{pmatrix} \][/tex]
Next, calculate the determinant:
[tex]\[ \text{det}(A - \lambda I) = \begin{vmatrix} 1 - \lambda & -\frac{1}{2} \\ \frac{3}{2} & -1 - \lambda \end{vmatrix} \][/tex]
Using the determinant formula for a [tex]\( 2 \times 2 \)[/tex] matrix:
[tex]\[ \begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc \][/tex]
We get:
[tex]\[ (1 - \lambda)(-1 - \lambda) - \left( -\frac{1}{2} \times \frac{3}{2} \right) \][/tex]
Expanding and simplifying:
[tex]\[ (1 - \lambda)(-1 - \lambda) + \frac{3}{4} = (\lambda^2 - 0.25) \][/tex]
Setting the determinant to equal zero gives the characteristic equation:
[tex]\[ \lambda^2 - 0.25 = 0 \][/tex]
So the characteristic equation is:
[tex]\[ \boxed{\lambda^2 - 0.25 = 0} \][/tex]
### (b) Finding the Eigenvalues
To find the eigenvalues, solve the characteristic equation:
[tex]\[ \lambda^2 - 0.25 = 0 \][/tex]
This can be factored into:
[tex]\[ (\lambda + 0.5)(\lambda - 0.5) = 0 \][/tex]
Therefore, the eigenvalues are:
[tex]\[ \lambda = -0.5, \, 0.5 \][/tex]
Ordering them from smallest to largest, we have:
[tex]\[ (\lambda_1, \lambda_2) = \boxed{(-0.5, 0.5)} \][/tex]
### Finding the Eigenvectors
1. For [tex]\(\lambda = -0.5\)[/tex]:
The matrix [tex]\( A - (-0.5)I = A + 0.5I \)[/tex]:
[tex]\[ \begin{pmatrix} 1 + 0.5 & -\frac{1}{2} \\ \frac{3}{2} & -1 + 0.5 \end{pmatrix} = \begin{pmatrix} 1.5 & -0.5 \\ 1.5 & -0.5 \end{pmatrix} \][/tex]
To find the eigenvector, solve:
[tex]\[ \begin{pmatrix} 1.5 & -0.5 \\ 1.5 & -0.5 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \][/tex]
From the equations:
[tex]\[ 1.5 x_1 - 0.5 x_2 = 0 \][/tex]
Solve for [tex]\( x_2 \)[/tex]:
[tex]\[ x_2 = 3 x_1 \][/tex]
Thus, a basis for the eigenspace corresponding to [tex]\(\lambda = -0.5\)[/tex] is:
[tex]\[ \boxed{\begin{pmatrix} 0.3333333333333333 \\ 1.0 \end{pmatrix}} \][/tex]
2. For [tex]\(\lambda = 0.5\)[/tex]:
The matrix [tex]\( A - 0.5I \)[/tex]:
[tex]\[ \begin{pmatrix} 1 - 0.5 & -\frac{1}{2} \\ \frac{3}{2} & -1 - 0.5 \end{pmatrix} = \begin{pmatrix} 0.5 & -0.5 \\ 1.5 & -1.5 \end{pmatrix} \][/tex]
To find the eigenvector, solve:
[tex]\[ \begin{pmatrix} 0.5 & -0.5 \\ 1.5 & -1.5 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \][/tex]
From the equations:
[tex]\[ 0.5 y_1 - 0.5 y_2 = 0 \][/tex]
Solve for [tex]\( y_2 \)[/tex]:
[tex]\[ y_2 = y_1 \][/tex]
Thus, a basis for the eigenspace corresponding to [tex]\(\lambda = 0.5\)[/tex] is:
[tex]\[ \boxed{\begin{pmatrix} 1.0 \\ 1.0 \end{pmatrix}} \][/tex]
Your participation means a lot to us. Keep sharing information and solutions. This community grows thanks to the amazing contributions from members like you. Your search for answers ends at IDNLearn.com. Thank you for visiting, and we hope to assist you again soon.