Discover new perspectives and gain insights with IDNLearn.com's diverse answers. Join our community to receive prompt and reliable responses to your questions from experienced professionals.
Sagot :
To solve this problem, we need to find the characteristic equation, the eigenvalues, and a basis for each of the corresponding eigenspaces of the given matrix:
[tex]\[ \mathbf{A} = \begin{bmatrix} 0 & -3 & 5 \\ -4 & 4 & -10 \\ 0 & 0 & 4 \end{bmatrix} \][/tex]
Let's go through the steps in detail:
(a) Finding the Characteristic Equation:
The characteristic equation of a matrix is found by solving the determinant of [tex]\(\mathbf{A} - \lambda \mathbf{I} = 0\)[/tex], where [tex]\(\mathbf{I}\)[/tex] is the identity matrix and [tex]\(\lambda\)[/tex] represents the eigenvalues. For our given matrix [tex]\(\mathbf{A}\)[/tex],
[tex]\[ \mathbf{A} - \lambda \mathbf{I} = \begin{bmatrix} 0 - \lambda & -3 & 5 \\ -4 & 4 - \lambda & -10 \\ 0 & 0 & 4 - \lambda \end{bmatrix} \][/tex]
To find the determinant, we can do cofactor expansion:
[tex]\[ \text{det}(\mathbf{A} - \lambda \mathbf{I}) = \begin{vmatrix} -\lambda & -3 & 5 \\ -4 & 4 - \lambda & -10 \\ 0 & 0 & 4 - \lambda \end{vmatrix} \][/tex]
Since the last row has only one non-zero element, the calculation simplifies:
[tex]\[ \text{det}(\mathbf{A} - \lambda \mathbf{I}) = (4 - \lambda) \begin{vmatrix} -\lambda & -3 \\ -4 & 4 - \lambda \end{vmatrix} \][/tex]
We now find this 2x2 determinant:
[tex]\[ \begin{vmatrix} -\lambda & -3 \\ -4 & 4 - \lambda \end{vmatrix} = \lambda(4 - \lambda) - (-3)(-4) = \lambda(4 - \lambda) - 12 \][/tex]
[tex]\[ = 4\lambda - \lambda^2 - 12 \][/tex]
Thus, the determinant becomes:
[tex]\[ (4 - \lambda)(4\lambda - \lambda^2 - 12) \][/tex]
Expanding and simplifying, we obtain the characteristic polynomial:
[tex]\[ -\lambda^3 + 8\lambda^2 - 4\lambda + 48 = 0 \][/tex]
Thus, the characteristic equation is:
[tex]\[ \boxed{\lambda^3 - (-8.0)\lambda^2 + 4.0\lambda - 48.0 = 0} \][/tex]
(b) Finding the Eigenvalues and Bases for Eigenspaces:
The roots of the characteristic equation [tex]\(\lambda^3 - (-8.0)\lambda^2 + 4.0\lambda - 48.0 = 0\)[/tex] give us the eigenvalues.
The eigenvalues are:
[tex]\[ \boxed{\lambda_1 = -2.0, \lambda_2 = 4.0, \lambda_3 = 6.0} \][/tex]
To find a basis for each eigenspace, we need to solve [tex]\((\mathbf{A} - \lambda_i \mathbf{I})\mathbf{x} = 0\)[/tex] for each eigenvalue [tex]\(\lambda_i\)[/tex].
For [tex]\(\lambda_1 = -2.0\)[/tex]:
[tex]\[ x_1 = \begin{bmatrix} -0.83205029 \\ -0.5547002 \\ 0 \end{bmatrix} \][/tex]
For [tex]\(\lambda_2 = 4.0\)[/tex]:
[tex]\[ x_2 = \begin{bmatrix} -0.44022545 \\ 0.88045091 \\ 0.17609018 \end{bmatrix} \][/tex]
For [tex]\(\lambda_3 = 6.0\)[/tex]:
[tex]\[ x_3 = \begin{bmatrix} 0.4472136 \\ -0.89442719 \\ 0 \end{bmatrix} \][/tex]
Thus, the bases for the eigenspaces associated with the eigenvalues [tex]\(\lambda_1, \lambda_2,\)[/tex] and [tex]\(\lambda_3\)[/tex] are:
[tex]\[ \boxed{ \begin{aligned} x_1 &= \begin{bmatrix} -0.83205029 \\ -0.5547002 \\ 0 \end{bmatrix},\\ x_2 &= \begin{bmatrix} -0.44022545 \\ 0.88045091 \\ 0.17609018 \end{bmatrix},\\ x_3 &= \begin{bmatrix} 0.4472136 \\ -0.89442719 \\ 0 \end{bmatrix} \end{aligned} } \][/tex]
[tex]\[ \mathbf{A} = \begin{bmatrix} 0 & -3 & 5 \\ -4 & 4 & -10 \\ 0 & 0 & 4 \end{bmatrix} \][/tex]
Let's go through the steps in detail:
(a) Finding the Characteristic Equation:
The characteristic equation of a matrix is found by solving the determinant of [tex]\(\mathbf{A} - \lambda \mathbf{I} = 0\)[/tex], where [tex]\(\mathbf{I}\)[/tex] is the identity matrix and [tex]\(\lambda\)[/tex] represents the eigenvalues. For our given matrix [tex]\(\mathbf{A}\)[/tex],
[tex]\[ \mathbf{A} - \lambda \mathbf{I} = \begin{bmatrix} 0 - \lambda & -3 & 5 \\ -4 & 4 - \lambda & -10 \\ 0 & 0 & 4 - \lambda \end{bmatrix} \][/tex]
To find the determinant, we can do cofactor expansion:
[tex]\[ \text{det}(\mathbf{A} - \lambda \mathbf{I}) = \begin{vmatrix} -\lambda & -3 & 5 \\ -4 & 4 - \lambda & -10 \\ 0 & 0 & 4 - \lambda \end{vmatrix} \][/tex]
Since the last row has only one non-zero element, the calculation simplifies:
[tex]\[ \text{det}(\mathbf{A} - \lambda \mathbf{I}) = (4 - \lambda) \begin{vmatrix} -\lambda & -3 \\ -4 & 4 - \lambda \end{vmatrix} \][/tex]
We now find this 2x2 determinant:
[tex]\[ \begin{vmatrix} -\lambda & -3 \\ -4 & 4 - \lambda \end{vmatrix} = \lambda(4 - \lambda) - (-3)(-4) = \lambda(4 - \lambda) - 12 \][/tex]
[tex]\[ = 4\lambda - \lambda^2 - 12 \][/tex]
Thus, the determinant becomes:
[tex]\[ (4 - \lambda)(4\lambda - \lambda^2 - 12) \][/tex]
Expanding and simplifying, we obtain the characteristic polynomial:
[tex]\[ -\lambda^3 + 8\lambda^2 - 4\lambda + 48 = 0 \][/tex]
Thus, the characteristic equation is:
[tex]\[ \boxed{\lambda^3 - (-8.0)\lambda^2 + 4.0\lambda - 48.0 = 0} \][/tex]
(b) Finding the Eigenvalues and Bases for Eigenspaces:
The roots of the characteristic equation [tex]\(\lambda^3 - (-8.0)\lambda^2 + 4.0\lambda - 48.0 = 0\)[/tex] give us the eigenvalues.
The eigenvalues are:
[tex]\[ \boxed{\lambda_1 = -2.0, \lambda_2 = 4.0, \lambda_3 = 6.0} \][/tex]
To find a basis for each eigenspace, we need to solve [tex]\((\mathbf{A} - \lambda_i \mathbf{I})\mathbf{x} = 0\)[/tex] for each eigenvalue [tex]\(\lambda_i\)[/tex].
For [tex]\(\lambda_1 = -2.0\)[/tex]:
[tex]\[ x_1 = \begin{bmatrix} -0.83205029 \\ -0.5547002 \\ 0 \end{bmatrix} \][/tex]
For [tex]\(\lambda_2 = 4.0\)[/tex]:
[tex]\[ x_2 = \begin{bmatrix} -0.44022545 \\ 0.88045091 \\ 0.17609018 \end{bmatrix} \][/tex]
For [tex]\(\lambda_3 = 6.0\)[/tex]:
[tex]\[ x_3 = \begin{bmatrix} 0.4472136 \\ -0.89442719 \\ 0 \end{bmatrix} \][/tex]
Thus, the bases for the eigenspaces associated with the eigenvalues [tex]\(\lambda_1, \lambda_2,\)[/tex] and [tex]\(\lambda_3\)[/tex] are:
[tex]\[ \boxed{ \begin{aligned} x_1 &= \begin{bmatrix} -0.83205029 \\ -0.5547002 \\ 0 \end{bmatrix},\\ x_2 &= \begin{bmatrix} -0.44022545 \\ 0.88045091 \\ 0.17609018 \end{bmatrix},\\ x_3 &= \begin{bmatrix} 0.4472136 \\ -0.89442719 \\ 0 \end{bmatrix} \end{aligned} } \][/tex]
We greatly appreciate every question and answer you provide. Keep engaging and finding the best solutions. This community is the perfect place to learn and grow together. Thank you for visiting IDNLearn.com. We’re here to provide clear and concise answers, so visit us again soon.