IDNLearn.com is designed to help you find reliable answers quickly and easily. Discover reliable and timely information on any topic from our network of experienced professionals.

Find the characteristic equation and the eigenvalues (and a basis for each of the corresponding eigenspaces) of the matrix:

[tex]\[ \left[\begin{array}{rrr}
0 & -3 & 5 \\
-4 & 4 & -10 \\
0 & 0 & 4
\end{array}\right] \][/tex]

(a) The characteristic equation: [tex]\(\square\)[/tex]

(b) The eigenvalues (Enter your answers from smallest to largest):
[tex]\[ (\lambda_1, \lambda_2, \lambda_3) = (\square, \square, \square) \][/tex]

(c) A basis for each of the corresponding eigenspaces:
[tex]\[ \begin{array}{l}
x_1 = \square \\
x_2 = \square \\
x_3 = \square
\end{array} \][/tex]


Sagot :

To solve this problem, we need to find the characteristic equation, the eigenvalues, and a basis for each of the corresponding eigenspaces of the given matrix:

[tex]\[ \mathbf{A} = \begin{bmatrix} 0 & -3 & 5 \\ -4 & 4 & -10 \\ 0 & 0 & 4 \end{bmatrix} \][/tex]

Let's go through the steps in detail:

(a) Finding the Characteristic Equation:
The characteristic equation of a matrix is found by solving the determinant of [tex]\(\mathbf{A} - \lambda \mathbf{I} = 0\)[/tex], where [tex]\(\mathbf{I}\)[/tex] is the identity matrix and [tex]\(\lambda\)[/tex] represents the eigenvalues. For our given matrix [tex]\(\mathbf{A}\)[/tex],

[tex]\[ \mathbf{A} - \lambda \mathbf{I} = \begin{bmatrix} 0 - \lambda & -3 & 5 \\ -4 & 4 - \lambda & -10 \\ 0 & 0 & 4 - \lambda \end{bmatrix} \][/tex]

To find the determinant, we can do cofactor expansion:

[tex]\[ \text{det}(\mathbf{A} - \lambda \mathbf{I}) = \begin{vmatrix} -\lambda & -3 & 5 \\ -4 & 4 - \lambda & -10 \\ 0 & 0 & 4 - \lambda \end{vmatrix} \][/tex]

Since the last row has only one non-zero element, the calculation simplifies:

[tex]\[ \text{det}(\mathbf{A} - \lambda \mathbf{I}) = (4 - \lambda) \begin{vmatrix} -\lambda & -3 \\ -4 & 4 - \lambda \end{vmatrix} \][/tex]

We now find this 2x2 determinant:

[tex]\[ \begin{vmatrix} -\lambda & -3 \\ -4 & 4 - \lambda \end{vmatrix} = \lambda(4 - \lambda) - (-3)(-4) = \lambda(4 - \lambda) - 12 \][/tex]

[tex]\[ = 4\lambda - \lambda^2 - 12 \][/tex]

Thus, the determinant becomes:

[tex]\[ (4 - \lambda)(4\lambda - \lambda^2 - 12) \][/tex]

Expanding and simplifying, we obtain the characteristic polynomial:

[tex]\[ -\lambda^3 + 8\lambda^2 - 4\lambda + 48 = 0 \][/tex]

Thus, the characteristic equation is:

[tex]\[ \boxed{\lambda^3 - (-8.0)\lambda^2 + 4.0\lambda - 48.0 = 0} \][/tex]

(b) Finding the Eigenvalues and Bases for Eigenspaces:

The roots of the characteristic equation [tex]\(\lambda^3 - (-8.0)\lambda^2 + 4.0\lambda - 48.0 = 0\)[/tex] give us the eigenvalues.

The eigenvalues are:
[tex]\[ \boxed{\lambda_1 = -2.0, \lambda_2 = 4.0, \lambda_3 = 6.0} \][/tex]

To find a basis for each eigenspace, we need to solve [tex]\((\mathbf{A} - \lambda_i \mathbf{I})\mathbf{x} = 0\)[/tex] for each eigenvalue [tex]\(\lambda_i\)[/tex].

For [tex]\(\lambda_1 = -2.0\)[/tex]:
[tex]\[ x_1 = \begin{bmatrix} -0.83205029 \\ -0.5547002 \\ 0 \end{bmatrix} \][/tex]

For [tex]\(\lambda_2 = 4.0\)[/tex]:
[tex]\[ x_2 = \begin{bmatrix} -0.44022545 \\ 0.88045091 \\ 0.17609018 \end{bmatrix} \][/tex]

For [tex]\(\lambda_3 = 6.0\)[/tex]:
[tex]\[ x_3 = \begin{bmatrix} 0.4472136 \\ -0.89442719 \\ 0 \end{bmatrix} \][/tex]

Thus, the bases for the eigenspaces associated with the eigenvalues [tex]\(\lambda_1, \lambda_2,\)[/tex] and [tex]\(\lambda_3\)[/tex] are:

[tex]\[ \boxed{ \begin{aligned} x_1 &= \begin{bmatrix} -0.83205029 \\ -0.5547002 \\ 0 \end{bmatrix},\\ x_2 &= \begin{bmatrix} -0.44022545 \\ 0.88045091 \\ 0.17609018 \end{bmatrix},\\ x_3 &= \begin{bmatrix} 0.4472136 \\ -0.89442719 \\ 0 \end{bmatrix} \end{aligned} } \][/tex]