From beginner to expert, IDNLearn.com has answers for everyone. Find reliable solutions to your questions quickly and accurately with help from our dedicated community of experts.
Sagot :
To find the characteristic equation, eigenvalues, and eigenvectors of the matrix
[tex]\[ \begin{pmatrix} 2 & -2 & 9 \\ 0 & 3 & -2 \\ 0 & -1 & 2 \end{pmatrix}, \][/tex]
we can follow the steps below:
#### (a) Characteristic Equation
1. The characteristic equation of a matrix [tex]\( A \)[/tex] is derived from the determinant of [tex]\( A - \lambda I \)[/tex], where [tex]\( \lambda \)[/tex] is an eigenvalue and [tex]\( I \)[/tex] is the identity matrix.
2. For the given matrix [tex]\( A \)[/tex]:
[tex]\[ A - \lambda I = \begin{pmatrix} 2-\lambda & -2 & 9 \\ 0 & 3-\lambda & -2 \\ 0 & -1 & 2-\lambda \end{pmatrix} \][/tex]
3. Calculate the determinant of this matrix to get the characteristic equation:
[tex]\[ \text{det}(A - \lambda I) = \left|\begin{array}{ccc} 2-\lambda & -2 & 9 \\ 0 & 3-\lambda & -2 \\ 0 & -1 & 2-\lambda \end{array}\right| \][/tex]
4. Expanding along the first row:
[tex]\[ \text{det}(A - \lambda I) = (2-\lambda) \left|\begin{array}{cc} 3-\lambda & -2 \\ -1 & 2-\lambda \end{array}\right| \][/tex]
[tex]\[ = (2-\lambda) \left[ (3-\lambda)(2-\lambda) - (-2)(-1) \right] \\ = (2-\lambda) \left[ (3-\lambda)(2-\lambda) - 2 \right] \][/tex]
[tex]\[ = (2-\lambda) \left(6 - 5\lambda + \lambda^2 - 2\right) \\ = (2-\lambda) (\lambda^2 - 5\lambda + 4) \][/tex]
5. Solve for the roots of the polynomial [tex]\(\lambda^3 - 7\lambda^2 + 14\lambda - 8 = 0\)[/tex].
Thus, the characteristic equation is:
[tex]\[ \lambda^3 - 7\lambda^2 + 14\lambda - 8 = 0 \][/tex]
#### (b) Eigenvalues and Eigenspaces
1. Find the roots of the characteristic equation to determine the eigenvalues:
[tex]\[ (\lambda - 1)(\lambda - 2)(\lambda - 4) = 0 \][/tex]
2. The eigenvalues are [tex]\(\lambda_1 = 1\)[/tex], [tex]\(\lambda_2 = 2\)[/tex], and [tex]\(\lambda_3 = 4\)[/tex].
3. Now, for each eigenvalue, we find the corresponding eigenvectors (basis for the eigenspaces).
##### Eigenvalue [tex]\(\lambda = 1\)[/tex]:
Solve [tex]\((A - I)x = 0\)[/tex]:
[tex]\[ \begin{pmatrix} 1 & -2 & 9 \\ 0 & 2 & -2 \\ 0 & -1 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \][/tex]
[tex]\[ \Rightarrow \begin{cases} x_1 - 2x_2 + 9x_3 = 0 \\ 2x_2 - 2x_3 = 0 \\ -x_2 + x_3 = 0 \end{cases} \][/tex]
[tex]\[ \Rightarrow x_2 = x_3, x_1 = -7x_2 \\ \Rightarrow x = k \begin{pmatrix} -7 \\ 1 \\ 1 \end{pmatrix} \][/tex]
A basis for the eigenspace corresponding to [tex]\(\lambda = 1\)[/tex] is:
[tex]\[ \begin{pmatrix} -7 \\ 1 \\ 1 \end{pmatrix} \][/tex]
##### Eigenvalue [tex]\(\lambda = 2\)[/tex]:
Solve [tex]\((A - 2I)x = 0\)[/tex]:
[tex]\[ \begin{pmatrix} 0 & -2 & 9 \\ 0 & 1 & -2 \\ 0 & -1 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \][/tex]
[tex]\[ \Rightarrow \begin{cases} -x_2 + 9x_3 = 0 \\ x_2 = 0 \\ -x_2 = 0 \end{cases} \][/tex]
[tex]\[ \Rightarrow x_1 \text{ is free}, x_2 = 0, x_3 = 0 \\ \Rightarrow x = k \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \][/tex]
A basis for the eigenspace corresponding to [tex]\(\lambda = 2\)[/tex] is:
[tex]\[ \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \][/tex]
##### Eigenvalue [tex]\(\lambda = 4\)[/tex]:
Solve [tex]\((A - 4I)x = 0\)[/tex]:
[tex]\[ \begin{pmatrix} -2 & -2 & 9 \\ 0 & -1 & -2 \\ 0 & -1 & -2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \][/tex]
[tex]\[ \Rightarrow \begin{cases} -2x_1 - 2x_2 + 9x_3 = 0 \\ -x_2 - 2x_3 = 0 \\ -x_2 - 2x_3 = 0 \end{cases} \][/tex]
[tex]\[ \Rightarrow x_2 = -2x_3, x_1 = \frac{13}{2} x_3 \\ \Rightarrow x = k \begin{pmatrix} \frac{13}{2}\\ -2 \\ 1 \end{pmatrix} \][/tex]
A basis for the eigenspace corresponding to [tex]\(\lambda = 4\)[/tex] is:
[tex]\[ \begin{pmatrix} \frac{13}{2} \\ -2 \\ 1 \end{pmatrix} \][/tex]
#### Summary:
1. The characteristic equation is:
[tex]\[ \lambda^3 - 7\lambda^2 + 14\lambda - 8 = 0 \][/tex]
2. The eigenvalues are:
[tex]\[ \lambda_1 = 1, \lambda_2 = 2, \lambda_3 = 4 \][/tex]
3. A basis for each of the corresponding eigenspaces is:
[tex]\[ x_1 = \begin{pmatrix} -7 \\ 1 \\ 1 \end{pmatrix}, x_2 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, x_3 = \begin{pmatrix} \frac{13}{2} \\ -2 \\ 1 \end{pmatrix} \][/tex]
[tex]\[ \begin{pmatrix} 2 & -2 & 9 \\ 0 & 3 & -2 \\ 0 & -1 & 2 \end{pmatrix}, \][/tex]
we can follow the steps below:
#### (a) Characteristic Equation
1. The characteristic equation of a matrix [tex]\( A \)[/tex] is derived from the determinant of [tex]\( A - \lambda I \)[/tex], where [tex]\( \lambda \)[/tex] is an eigenvalue and [tex]\( I \)[/tex] is the identity matrix.
2. For the given matrix [tex]\( A \)[/tex]:
[tex]\[ A - \lambda I = \begin{pmatrix} 2-\lambda & -2 & 9 \\ 0 & 3-\lambda & -2 \\ 0 & -1 & 2-\lambda \end{pmatrix} \][/tex]
3. Calculate the determinant of this matrix to get the characteristic equation:
[tex]\[ \text{det}(A - \lambda I) = \left|\begin{array}{ccc} 2-\lambda & -2 & 9 \\ 0 & 3-\lambda & -2 \\ 0 & -1 & 2-\lambda \end{array}\right| \][/tex]
4. Expanding along the first row:
[tex]\[ \text{det}(A - \lambda I) = (2-\lambda) \left|\begin{array}{cc} 3-\lambda & -2 \\ -1 & 2-\lambda \end{array}\right| \][/tex]
[tex]\[ = (2-\lambda) \left[ (3-\lambda)(2-\lambda) - (-2)(-1) \right] \\ = (2-\lambda) \left[ (3-\lambda)(2-\lambda) - 2 \right] \][/tex]
[tex]\[ = (2-\lambda) \left(6 - 5\lambda + \lambda^2 - 2\right) \\ = (2-\lambda) (\lambda^2 - 5\lambda + 4) \][/tex]
5. Solve for the roots of the polynomial [tex]\(\lambda^3 - 7\lambda^2 + 14\lambda - 8 = 0\)[/tex].
Thus, the characteristic equation is:
[tex]\[ \lambda^3 - 7\lambda^2 + 14\lambda - 8 = 0 \][/tex]
#### (b) Eigenvalues and Eigenspaces
1. Find the roots of the characteristic equation to determine the eigenvalues:
[tex]\[ (\lambda - 1)(\lambda - 2)(\lambda - 4) = 0 \][/tex]
2. The eigenvalues are [tex]\(\lambda_1 = 1\)[/tex], [tex]\(\lambda_2 = 2\)[/tex], and [tex]\(\lambda_3 = 4\)[/tex].
3. Now, for each eigenvalue, we find the corresponding eigenvectors (basis for the eigenspaces).
##### Eigenvalue [tex]\(\lambda = 1\)[/tex]:
Solve [tex]\((A - I)x = 0\)[/tex]:
[tex]\[ \begin{pmatrix} 1 & -2 & 9 \\ 0 & 2 & -2 \\ 0 & -1 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \][/tex]
[tex]\[ \Rightarrow \begin{cases} x_1 - 2x_2 + 9x_3 = 0 \\ 2x_2 - 2x_3 = 0 \\ -x_2 + x_3 = 0 \end{cases} \][/tex]
[tex]\[ \Rightarrow x_2 = x_3, x_1 = -7x_2 \\ \Rightarrow x = k \begin{pmatrix} -7 \\ 1 \\ 1 \end{pmatrix} \][/tex]
A basis for the eigenspace corresponding to [tex]\(\lambda = 1\)[/tex] is:
[tex]\[ \begin{pmatrix} -7 \\ 1 \\ 1 \end{pmatrix} \][/tex]
##### Eigenvalue [tex]\(\lambda = 2\)[/tex]:
Solve [tex]\((A - 2I)x = 0\)[/tex]:
[tex]\[ \begin{pmatrix} 0 & -2 & 9 \\ 0 & 1 & -2 \\ 0 & -1 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \][/tex]
[tex]\[ \Rightarrow \begin{cases} -x_2 + 9x_3 = 0 \\ x_2 = 0 \\ -x_2 = 0 \end{cases} \][/tex]
[tex]\[ \Rightarrow x_1 \text{ is free}, x_2 = 0, x_3 = 0 \\ \Rightarrow x = k \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \][/tex]
A basis for the eigenspace corresponding to [tex]\(\lambda = 2\)[/tex] is:
[tex]\[ \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \][/tex]
##### Eigenvalue [tex]\(\lambda = 4\)[/tex]:
Solve [tex]\((A - 4I)x = 0\)[/tex]:
[tex]\[ \begin{pmatrix} -2 & -2 & 9 \\ 0 & -1 & -2 \\ 0 & -1 & -2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \][/tex]
[tex]\[ \Rightarrow \begin{cases} -2x_1 - 2x_2 + 9x_3 = 0 \\ -x_2 - 2x_3 = 0 \\ -x_2 - 2x_3 = 0 \end{cases} \][/tex]
[tex]\[ \Rightarrow x_2 = -2x_3, x_1 = \frac{13}{2} x_3 \\ \Rightarrow x = k \begin{pmatrix} \frac{13}{2}\\ -2 \\ 1 \end{pmatrix} \][/tex]
A basis for the eigenspace corresponding to [tex]\(\lambda = 4\)[/tex] is:
[tex]\[ \begin{pmatrix} \frac{13}{2} \\ -2 \\ 1 \end{pmatrix} \][/tex]
#### Summary:
1. The characteristic equation is:
[tex]\[ \lambda^3 - 7\lambda^2 + 14\lambda - 8 = 0 \][/tex]
2. The eigenvalues are:
[tex]\[ \lambda_1 = 1, \lambda_2 = 2, \lambda_3 = 4 \][/tex]
3. A basis for each of the corresponding eigenspaces is:
[tex]\[ x_1 = \begin{pmatrix} -7 \\ 1 \\ 1 \end{pmatrix}, x_2 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, x_3 = \begin{pmatrix} \frac{13}{2} \\ -2 \\ 1 \end{pmatrix} \][/tex]
Thank you for using this platform to share and learn. Keep asking and answering. We appreciate every contribution you make. Find clear answers at IDNLearn.com. Thanks for stopping by, and come back for more reliable solutions.