Join the IDNLearn.com community and get your questions answered by knowledgeable individuals. Discover in-depth and reliable answers to all your questions from our knowledgeable community members who are always ready to assist.

Find the characteristic equation and the eigenvalues (and a basis for each of the corresponding eigenspaces) of the matrix:

[tex]\[
\left[\begin{array}{rrr}
2 & -2 & 9 \\
0 & 3 & -2 \\
0 & -1 & 2
\end{array}\right]
\][/tex]

(a) The characteristic equation:
[tex]\[
(\lambda-2)(\lambda-1)(\lambda-4) = 0
\][/tex]

(b) The eigenvalues (Enter your answers from smallest to largest):
[tex]\[
(\lambda_1, \lambda_2, \lambda_3) = (1, 2, 4)
\][/tex]

A basis for each of the corresponding eigenspaces:
[tex]\[
\begin{array}{l}
x_1 = \square \\
x_2 = \langle 2, 0, 0 \rangle \\
x_3 = \square
\end{array}
\][/tex]


Sagot :

To find the characteristic equation, eigenvalues, and eigenvectors of the matrix

[tex]\[ \begin{pmatrix} 2 & -2 & 9 \\ 0 & 3 & -2 \\ 0 & -1 & 2 \end{pmatrix}, \][/tex]

we can follow the steps below:

#### (a) Characteristic Equation

1. The characteristic equation of a matrix [tex]\( A \)[/tex] is derived from the determinant of [tex]\( A - \lambda I \)[/tex], where [tex]\( \lambda \)[/tex] is an eigenvalue and [tex]\( I \)[/tex] is the identity matrix.

2. For the given matrix [tex]\( A \)[/tex]:

[tex]\[ A - \lambda I = \begin{pmatrix} 2-\lambda & -2 & 9 \\ 0 & 3-\lambda & -2 \\ 0 & -1 & 2-\lambda \end{pmatrix} \][/tex]

3. Calculate the determinant of this matrix to get the characteristic equation:

[tex]\[ \text{det}(A - \lambda I) = \left|\begin{array}{ccc} 2-\lambda & -2 & 9 \\ 0 & 3-\lambda & -2 \\ 0 & -1 & 2-\lambda \end{array}\right| \][/tex]

4. Expanding along the first row:

[tex]\[ \text{det}(A - \lambda I) = (2-\lambda) \left|\begin{array}{cc} 3-\lambda & -2 \\ -1 & 2-\lambda \end{array}\right| \][/tex]

[tex]\[ = (2-\lambda) \left[ (3-\lambda)(2-\lambda) - (-2)(-1) \right] \\ = (2-\lambda) \left[ (3-\lambda)(2-\lambda) - 2 \right] \][/tex]

[tex]\[ = (2-\lambda) \left(6 - 5\lambda + \lambda^2 - 2\right) \\ = (2-\lambda) (\lambda^2 - 5\lambda + 4) \][/tex]

5. Solve for the roots of the polynomial [tex]\(\lambda^3 - 7\lambda^2 + 14\lambda - 8 = 0\)[/tex].

Thus, the characteristic equation is:

[tex]\[ \lambda^3 - 7\lambda^2 + 14\lambda - 8 = 0 \][/tex]

#### (b) Eigenvalues and Eigenspaces

1. Find the roots of the characteristic equation to determine the eigenvalues:

[tex]\[ (\lambda - 1)(\lambda - 2)(\lambda - 4) = 0 \][/tex]

2. The eigenvalues are [tex]\(\lambda_1 = 1\)[/tex], [tex]\(\lambda_2 = 2\)[/tex], and [tex]\(\lambda_3 = 4\)[/tex].

3. Now, for each eigenvalue, we find the corresponding eigenvectors (basis for the eigenspaces).

##### Eigenvalue [tex]\(\lambda = 1\)[/tex]:

Solve [tex]\((A - I)x = 0\)[/tex]:

[tex]\[ \begin{pmatrix} 1 & -2 & 9 \\ 0 & 2 & -2 \\ 0 & -1 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \][/tex]

[tex]\[ \Rightarrow \begin{cases} x_1 - 2x_2 + 9x_3 = 0 \\ 2x_2 - 2x_3 = 0 \\ -x_2 + x_3 = 0 \end{cases} \][/tex]

[tex]\[ \Rightarrow x_2 = x_3, x_1 = -7x_2 \\ \Rightarrow x = k \begin{pmatrix} -7 \\ 1 \\ 1 \end{pmatrix} \][/tex]

A basis for the eigenspace corresponding to [tex]\(\lambda = 1\)[/tex] is:

[tex]\[ \begin{pmatrix} -7 \\ 1 \\ 1 \end{pmatrix} \][/tex]

##### Eigenvalue [tex]\(\lambda = 2\)[/tex]:

Solve [tex]\((A - 2I)x = 0\)[/tex]:

[tex]\[ \begin{pmatrix} 0 & -2 & 9 \\ 0 & 1 & -2 \\ 0 & -1 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \][/tex]

[tex]\[ \Rightarrow \begin{cases} -x_2 + 9x_3 = 0 \\ x_2 = 0 \\ -x_2 = 0 \end{cases} \][/tex]

[tex]\[ \Rightarrow x_1 \text{ is free}, x_2 = 0, x_3 = 0 \\ \Rightarrow x = k \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \][/tex]

A basis for the eigenspace corresponding to [tex]\(\lambda = 2\)[/tex] is:

[tex]\[ \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \][/tex]

##### Eigenvalue [tex]\(\lambda = 4\)[/tex]:

Solve [tex]\((A - 4I)x = 0\)[/tex]:

[tex]\[ \begin{pmatrix} -2 & -2 & 9 \\ 0 & -1 & -2 \\ 0 & -1 & -2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \][/tex]

[tex]\[ \Rightarrow \begin{cases} -2x_1 - 2x_2 + 9x_3 = 0 \\ -x_2 - 2x_3 = 0 \\ -x_2 - 2x_3 = 0 \end{cases} \][/tex]

[tex]\[ \Rightarrow x_2 = -2x_3, x_1 = \frac{13}{2} x_3 \\ \Rightarrow x = k \begin{pmatrix} \frac{13}{2}\\ -2 \\ 1 \end{pmatrix} \][/tex]

A basis for the eigenspace corresponding to [tex]\(\lambda = 4\)[/tex] is:

[tex]\[ \begin{pmatrix} \frac{13}{2} \\ -2 \\ 1 \end{pmatrix} \][/tex]

#### Summary:

1. The characteristic equation is:

[tex]\[ \lambda^3 - 7\lambda^2 + 14\lambda - 8 = 0 \][/tex]

2. The eigenvalues are:

[tex]\[ \lambda_1 = 1, \lambda_2 = 2, \lambda_3 = 4 \][/tex]

3. A basis for each of the corresponding eigenspaces is:

[tex]\[ x_1 = \begin{pmatrix} -7 \\ 1 \\ 1 \end{pmatrix}, x_2 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, x_3 = \begin{pmatrix} \frac{13}{2} \\ -2 \\ 1 \end{pmatrix} \][/tex]