IDNLearn.com: Where your questions meet expert advice and community insights. Our community is here to provide detailed and trustworthy answers to any questions you may have.
Sagot :
To find the characteristic equation, eigenvalues, and eigenvectors of the matrix
[tex]\[ \begin{pmatrix} 2 & -2 & 9 \\ 0 & 3 & -2 \\ 0 & -1 & 2 \end{pmatrix}, \][/tex]
we can follow the steps below:
#### (a) Characteristic Equation
1. The characteristic equation of a matrix [tex]\( A \)[/tex] is derived from the determinant of [tex]\( A - \lambda I \)[/tex], where [tex]\( \lambda \)[/tex] is an eigenvalue and [tex]\( I \)[/tex] is the identity matrix.
2. For the given matrix [tex]\( A \)[/tex]:
[tex]\[ A - \lambda I = \begin{pmatrix} 2-\lambda & -2 & 9 \\ 0 & 3-\lambda & -2 \\ 0 & -1 & 2-\lambda \end{pmatrix} \][/tex]
3. Calculate the determinant of this matrix to get the characteristic equation:
[tex]\[ \text{det}(A - \lambda I) = \left|\begin{array}{ccc} 2-\lambda & -2 & 9 \\ 0 & 3-\lambda & -2 \\ 0 & -1 & 2-\lambda \end{array}\right| \][/tex]
4. Expanding along the first row:
[tex]\[ \text{det}(A - \lambda I) = (2-\lambda) \left|\begin{array}{cc} 3-\lambda & -2 \\ -1 & 2-\lambda \end{array}\right| \][/tex]
[tex]\[ = (2-\lambda) \left[ (3-\lambda)(2-\lambda) - (-2)(-1) \right] \\ = (2-\lambda) \left[ (3-\lambda)(2-\lambda) - 2 \right] \][/tex]
[tex]\[ = (2-\lambda) \left(6 - 5\lambda + \lambda^2 - 2\right) \\ = (2-\lambda) (\lambda^2 - 5\lambda + 4) \][/tex]
5. Solve for the roots of the polynomial [tex]\(\lambda^3 - 7\lambda^2 + 14\lambda - 8 = 0\)[/tex].
Thus, the characteristic equation is:
[tex]\[ \lambda^3 - 7\lambda^2 + 14\lambda - 8 = 0 \][/tex]
#### (b) Eigenvalues and Eigenspaces
1. Find the roots of the characteristic equation to determine the eigenvalues:
[tex]\[ (\lambda - 1)(\lambda - 2)(\lambda - 4) = 0 \][/tex]
2. The eigenvalues are [tex]\(\lambda_1 = 1\)[/tex], [tex]\(\lambda_2 = 2\)[/tex], and [tex]\(\lambda_3 = 4\)[/tex].
3. Now, for each eigenvalue, we find the corresponding eigenvectors (basis for the eigenspaces).
##### Eigenvalue [tex]\(\lambda = 1\)[/tex]:
Solve [tex]\((A - I)x = 0\)[/tex]:
[tex]\[ \begin{pmatrix} 1 & -2 & 9 \\ 0 & 2 & -2 \\ 0 & -1 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \][/tex]
[tex]\[ \Rightarrow \begin{cases} x_1 - 2x_2 + 9x_3 = 0 \\ 2x_2 - 2x_3 = 0 \\ -x_2 + x_3 = 0 \end{cases} \][/tex]
[tex]\[ \Rightarrow x_2 = x_3, x_1 = -7x_2 \\ \Rightarrow x = k \begin{pmatrix} -7 \\ 1 \\ 1 \end{pmatrix} \][/tex]
A basis for the eigenspace corresponding to [tex]\(\lambda = 1\)[/tex] is:
[tex]\[ \begin{pmatrix} -7 \\ 1 \\ 1 \end{pmatrix} \][/tex]
##### Eigenvalue [tex]\(\lambda = 2\)[/tex]:
Solve [tex]\((A - 2I)x = 0\)[/tex]:
[tex]\[ \begin{pmatrix} 0 & -2 & 9 \\ 0 & 1 & -2 \\ 0 & -1 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \][/tex]
[tex]\[ \Rightarrow \begin{cases} -x_2 + 9x_3 = 0 \\ x_2 = 0 \\ -x_2 = 0 \end{cases} \][/tex]
[tex]\[ \Rightarrow x_1 \text{ is free}, x_2 = 0, x_3 = 0 \\ \Rightarrow x = k \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \][/tex]
A basis for the eigenspace corresponding to [tex]\(\lambda = 2\)[/tex] is:
[tex]\[ \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \][/tex]
##### Eigenvalue [tex]\(\lambda = 4\)[/tex]:
Solve [tex]\((A - 4I)x = 0\)[/tex]:
[tex]\[ \begin{pmatrix} -2 & -2 & 9 \\ 0 & -1 & -2 \\ 0 & -1 & -2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \][/tex]
[tex]\[ \Rightarrow \begin{cases} -2x_1 - 2x_2 + 9x_3 = 0 \\ -x_2 - 2x_3 = 0 \\ -x_2 - 2x_3 = 0 \end{cases} \][/tex]
[tex]\[ \Rightarrow x_2 = -2x_3, x_1 = \frac{13}{2} x_3 \\ \Rightarrow x = k \begin{pmatrix} \frac{13}{2}\\ -2 \\ 1 \end{pmatrix} \][/tex]
A basis for the eigenspace corresponding to [tex]\(\lambda = 4\)[/tex] is:
[tex]\[ \begin{pmatrix} \frac{13}{2} \\ -2 \\ 1 \end{pmatrix} \][/tex]
#### Summary:
1. The characteristic equation is:
[tex]\[ \lambda^3 - 7\lambda^2 + 14\lambda - 8 = 0 \][/tex]
2. The eigenvalues are:
[tex]\[ \lambda_1 = 1, \lambda_2 = 2, \lambda_3 = 4 \][/tex]
3. A basis for each of the corresponding eigenspaces is:
[tex]\[ x_1 = \begin{pmatrix} -7 \\ 1 \\ 1 \end{pmatrix}, x_2 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, x_3 = \begin{pmatrix} \frac{13}{2} \\ -2 \\ 1 \end{pmatrix} \][/tex]
[tex]\[ \begin{pmatrix} 2 & -2 & 9 \\ 0 & 3 & -2 \\ 0 & -1 & 2 \end{pmatrix}, \][/tex]
we can follow the steps below:
#### (a) Characteristic Equation
1. The characteristic equation of a matrix [tex]\( A \)[/tex] is derived from the determinant of [tex]\( A - \lambda I \)[/tex], where [tex]\( \lambda \)[/tex] is an eigenvalue and [tex]\( I \)[/tex] is the identity matrix.
2. For the given matrix [tex]\( A \)[/tex]:
[tex]\[ A - \lambda I = \begin{pmatrix} 2-\lambda & -2 & 9 \\ 0 & 3-\lambda & -2 \\ 0 & -1 & 2-\lambda \end{pmatrix} \][/tex]
3. Calculate the determinant of this matrix to get the characteristic equation:
[tex]\[ \text{det}(A - \lambda I) = \left|\begin{array}{ccc} 2-\lambda & -2 & 9 \\ 0 & 3-\lambda & -2 \\ 0 & -1 & 2-\lambda \end{array}\right| \][/tex]
4. Expanding along the first row:
[tex]\[ \text{det}(A - \lambda I) = (2-\lambda) \left|\begin{array}{cc} 3-\lambda & -2 \\ -1 & 2-\lambda \end{array}\right| \][/tex]
[tex]\[ = (2-\lambda) \left[ (3-\lambda)(2-\lambda) - (-2)(-1) \right] \\ = (2-\lambda) \left[ (3-\lambda)(2-\lambda) - 2 \right] \][/tex]
[tex]\[ = (2-\lambda) \left(6 - 5\lambda + \lambda^2 - 2\right) \\ = (2-\lambda) (\lambda^2 - 5\lambda + 4) \][/tex]
5. Solve for the roots of the polynomial [tex]\(\lambda^3 - 7\lambda^2 + 14\lambda - 8 = 0\)[/tex].
Thus, the characteristic equation is:
[tex]\[ \lambda^3 - 7\lambda^2 + 14\lambda - 8 = 0 \][/tex]
#### (b) Eigenvalues and Eigenspaces
1. Find the roots of the characteristic equation to determine the eigenvalues:
[tex]\[ (\lambda - 1)(\lambda - 2)(\lambda - 4) = 0 \][/tex]
2. The eigenvalues are [tex]\(\lambda_1 = 1\)[/tex], [tex]\(\lambda_2 = 2\)[/tex], and [tex]\(\lambda_3 = 4\)[/tex].
3. Now, for each eigenvalue, we find the corresponding eigenvectors (basis for the eigenspaces).
##### Eigenvalue [tex]\(\lambda = 1\)[/tex]:
Solve [tex]\((A - I)x = 0\)[/tex]:
[tex]\[ \begin{pmatrix} 1 & -2 & 9 \\ 0 & 2 & -2 \\ 0 & -1 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \][/tex]
[tex]\[ \Rightarrow \begin{cases} x_1 - 2x_2 + 9x_3 = 0 \\ 2x_2 - 2x_3 = 0 \\ -x_2 + x_3 = 0 \end{cases} \][/tex]
[tex]\[ \Rightarrow x_2 = x_3, x_1 = -7x_2 \\ \Rightarrow x = k \begin{pmatrix} -7 \\ 1 \\ 1 \end{pmatrix} \][/tex]
A basis for the eigenspace corresponding to [tex]\(\lambda = 1\)[/tex] is:
[tex]\[ \begin{pmatrix} -7 \\ 1 \\ 1 \end{pmatrix} \][/tex]
##### Eigenvalue [tex]\(\lambda = 2\)[/tex]:
Solve [tex]\((A - 2I)x = 0\)[/tex]:
[tex]\[ \begin{pmatrix} 0 & -2 & 9 \\ 0 & 1 & -2 \\ 0 & -1 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \][/tex]
[tex]\[ \Rightarrow \begin{cases} -x_2 + 9x_3 = 0 \\ x_2 = 0 \\ -x_2 = 0 \end{cases} \][/tex]
[tex]\[ \Rightarrow x_1 \text{ is free}, x_2 = 0, x_3 = 0 \\ \Rightarrow x = k \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \][/tex]
A basis for the eigenspace corresponding to [tex]\(\lambda = 2\)[/tex] is:
[tex]\[ \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \][/tex]
##### Eigenvalue [tex]\(\lambda = 4\)[/tex]:
Solve [tex]\((A - 4I)x = 0\)[/tex]:
[tex]\[ \begin{pmatrix} -2 & -2 & 9 \\ 0 & -1 & -2 \\ 0 & -1 & -2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \][/tex]
[tex]\[ \Rightarrow \begin{cases} -2x_1 - 2x_2 + 9x_3 = 0 \\ -x_2 - 2x_3 = 0 \\ -x_2 - 2x_3 = 0 \end{cases} \][/tex]
[tex]\[ \Rightarrow x_2 = -2x_3, x_1 = \frac{13}{2} x_3 \\ \Rightarrow x = k \begin{pmatrix} \frac{13}{2}\\ -2 \\ 1 \end{pmatrix} \][/tex]
A basis for the eigenspace corresponding to [tex]\(\lambda = 4\)[/tex] is:
[tex]\[ \begin{pmatrix} \frac{13}{2} \\ -2 \\ 1 \end{pmatrix} \][/tex]
#### Summary:
1. The characteristic equation is:
[tex]\[ \lambda^3 - 7\lambda^2 + 14\lambda - 8 = 0 \][/tex]
2. The eigenvalues are:
[tex]\[ \lambda_1 = 1, \lambda_2 = 2, \lambda_3 = 4 \][/tex]
3. A basis for each of the corresponding eigenspaces is:
[tex]\[ x_1 = \begin{pmatrix} -7 \\ 1 \\ 1 \end{pmatrix}, x_2 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, x_3 = \begin{pmatrix} \frac{13}{2} \\ -2 \\ 1 \end{pmatrix} \][/tex]
We appreciate your presence here. Keep sharing knowledge and helping others find the answers they need. This community is the perfect place to learn together. Thank you for visiting IDNLearn.com. We’re here to provide dependable answers, so visit us again soon.