Explore IDNLearn.com's extensive Q&A database and find the answers you need. Join our community to receive prompt and reliable responses to your questions from knowledgeable professionals.
Sagot :
Sure, let's walk through the solution step-by-step.
### Step 1: Determine the Half-Life of the Goo
The scientist begins with 236 grams of radioactive goo. After 9 minutes, the amount of goo decays to 7.375 grams.
To find the half-life, [tex]\( T \)[/tex], we use the radioactive decay formula:
[tex]\[ G(t) = G_0 \left(\frac{1}{2}\right)^{\frac{t}{T}} \][/tex]
where:
- [tex]\( G(t) \)[/tex] is the remaining amount of goo at time [tex]\( t \)[/tex],
- [tex]\( G_0 \)[/tex] is the initial amount of goo,
- [tex]\( T \)[/tex] is the half-life.
Given that [tex]\( G_0 = 236 \)[/tex] grams, [tex]\( G(9) = 7.375 \)[/tex] grams, and [tex]\( t = 9 \)[/tex] minutes, we substitute these values into the equation:
[tex]\[ 7.375 = 236 \left(\frac{1}{2}\right)^{\frac{9}{T}} \][/tex]
Taking the natural logarithm on both sides to solve for [tex]\( T \)[/tex]:
[tex]\[ \ln(7.375) = \ln(236 \left(\frac{1}{2}\right)^{\frac{9}{T}}) \][/tex]
This simplifies to:
[tex]\[ \ln(7.375) = \ln(236) + \frac{9}{T} \ln\left(\frac{1}{2}\right) \][/tex]
From this, we can isolate [tex]\( T \)[/tex]:
[tex]\[ \frac{9}{T} \ln\left(\frac{1}{2}\right) = \ln(7.375) - \ln(236) \][/tex]
Solving for [tex]\( T \)[/tex]:
[tex]\[ T = \frac{9 \ln\left(\frac{1}{2}\right)}{\ln(7.375) - \ln(236)} \][/tex]
Given our constants:
- [tex]\(\ln(7.375) \approx 1.9981\)[/tex],
- [tex]\(\ln(236) \approx 5.4638\)[/tex],
- [tex]\(\ln\left(\frac{1}{2}\right) \approx -0.6931\)[/tex],
So:
[tex]\[ T = \frac{9 \times (-0.6931)}{1.9981 - 5.4638} \approx \frac{9 \times (-0.6931)}{-3.4657} \][/tex]
[tex]\[ T \approx 1.7999 \][/tex]
Therefore, the half-life of the goo is approximately [tex]\( 1.80 \)[/tex] minutes.
### Step 2: Derive the Formula for [tex]\( G(t) \)[/tex]
Using the computed half-life [tex]\( T \approx 1.80 \)[/tex], we can write the decay formula for the remaining amount of goo at time [tex]\( t \)[/tex]:
[tex]\[ G(t) = 236 \left(\frac{1}{2}\right)^{\frac{t}{1.80}} \][/tex]
### Step 3: Compute the Amount of Goo Remaining After 8 Minutes
To find the remaining amount of goo after 8 minutes, substitute [tex]\( t = 8 \)[/tex] into the decay formula:
[tex]\[ G(8) = 236 \left(\frac{1}{2}\right)^{\frac{8}{1.80}} \][/tex]
Simplify the exponent:
[tex]\[ G(8) = 236 \left(\frac{1}{2}\right)^{4.4444} \][/tex]
Using our calculations:
[tex]\[ G(8) \approx 10.8393 \][/tex]
So, the amount of goo remaining after 8 minutes is approximately [tex]\( 10.84 \)[/tex] grams.
In summary:
1. The half-life of the goo is approximately [tex]\( \boxed{1.80} \)[/tex] minutes.
2. The formula for [tex]\( G(t) \)[/tex] is [tex]\( \boxed{G(t) = 236 \left(\frac{1}{2}\right)^{\frac{t}{1.80}}} \)[/tex].
3. The amount of goo remaining after 8 minutes is approximately [tex]\( \boxed{10.84} \)[/tex] grams.
### Step 1: Determine the Half-Life of the Goo
The scientist begins with 236 grams of radioactive goo. After 9 minutes, the amount of goo decays to 7.375 grams.
To find the half-life, [tex]\( T \)[/tex], we use the radioactive decay formula:
[tex]\[ G(t) = G_0 \left(\frac{1}{2}\right)^{\frac{t}{T}} \][/tex]
where:
- [tex]\( G(t) \)[/tex] is the remaining amount of goo at time [tex]\( t \)[/tex],
- [tex]\( G_0 \)[/tex] is the initial amount of goo,
- [tex]\( T \)[/tex] is the half-life.
Given that [tex]\( G_0 = 236 \)[/tex] grams, [tex]\( G(9) = 7.375 \)[/tex] grams, and [tex]\( t = 9 \)[/tex] minutes, we substitute these values into the equation:
[tex]\[ 7.375 = 236 \left(\frac{1}{2}\right)^{\frac{9}{T}} \][/tex]
Taking the natural logarithm on both sides to solve for [tex]\( T \)[/tex]:
[tex]\[ \ln(7.375) = \ln(236 \left(\frac{1}{2}\right)^{\frac{9}{T}}) \][/tex]
This simplifies to:
[tex]\[ \ln(7.375) = \ln(236) + \frac{9}{T} \ln\left(\frac{1}{2}\right) \][/tex]
From this, we can isolate [tex]\( T \)[/tex]:
[tex]\[ \frac{9}{T} \ln\left(\frac{1}{2}\right) = \ln(7.375) - \ln(236) \][/tex]
Solving for [tex]\( T \)[/tex]:
[tex]\[ T = \frac{9 \ln\left(\frac{1}{2}\right)}{\ln(7.375) - \ln(236)} \][/tex]
Given our constants:
- [tex]\(\ln(7.375) \approx 1.9981\)[/tex],
- [tex]\(\ln(236) \approx 5.4638\)[/tex],
- [tex]\(\ln\left(\frac{1}{2}\right) \approx -0.6931\)[/tex],
So:
[tex]\[ T = \frac{9 \times (-0.6931)}{1.9981 - 5.4638} \approx \frac{9 \times (-0.6931)}{-3.4657} \][/tex]
[tex]\[ T \approx 1.7999 \][/tex]
Therefore, the half-life of the goo is approximately [tex]\( 1.80 \)[/tex] minutes.
### Step 2: Derive the Formula for [tex]\( G(t) \)[/tex]
Using the computed half-life [tex]\( T \approx 1.80 \)[/tex], we can write the decay formula for the remaining amount of goo at time [tex]\( t \)[/tex]:
[tex]\[ G(t) = 236 \left(\frac{1}{2}\right)^{\frac{t}{1.80}} \][/tex]
### Step 3: Compute the Amount of Goo Remaining After 8 Minutes
To find the remaining amount of goo after 8 minutes, substitute [tex]\( t = 8 \)[/tex] into the decay formula:
[tex]\[ G(8) = 236 \left(\frac{1}{2}\right)^{\frac{8}{1.80}} \][/tex]
Simplify the exponent:
[tex]\[ G(8) = 236 \left(\frac{1}{2}\right)^{4.4444} \][/tex]
Using our calculations:
[tex]\[ G(8) \approx 10.8393 \][/tex]
So, the amount of goo remaining after 8 minutes is approximately [tex]\( 10.84 \)[/tex] grams.
In summary:
1. The half-life of the goo is approximately [tex]\( \boxed{1.80} \)[/tex] minutes.
2. The formula for [tex]\( G(t) \)[/tex] is [tex]\( \boxed{G(t) = 236 \left(\frac{1}{2}\right)^{\frac{t}{1.80}}} \)[/tex].
3. The amount of goo remaining after 8 minutes is approximately [tex]\( \boxed{10.84} \)[/tex] grams.
We appreciate every question and answer you provide. Keep engaging and finding the best solutions. This community is the perfect place to learn and grow together. Thank you for choosing IDNLearn.com. We’re here to provide reliable answers, so please visit us again for more solutions.