Join IDNLearn.com to access a wealth of knowledge and get your questions answered by experts. Our experts are ready to provide in-depth answers and practical solutions to any questions you may have.
Sagot :
To find the period [tex]\( T \)[/tex] of a satellite in a circular orbit just above the surface of the Moon, we will use Kepler's Third Law adapted for circular orbits. The period [tex]\( T \)[/tex] is given by the formula:
[tex]\[ T^2 = \frac{4 \pi^2}{G M} r^3 \][/tex]
where:
- [tex]\( G \)[/tex] is the gravitational constant ([tex]\( 6.67 \times 10^{-11} \, \text{Nm}^2/\text{kg}^2 \)[/tex])
- [tex]\( M \)[/tex] is the mass of the Moon ([tex]\( 7.36 \times 10^{22} \, \text{kg} \)[/tex])
- [tex]\( r \)[/tex] is the radius of the Moon ([tex]\( 1.738 \times 10^6 \, \text{m} \)[/tex])
Let's go through the solution step-by-step:
1. Substitute the known values into the formula:
[tex]\[ T^2 = \frac{4 \pi^2 (1.738 \times 10^6)^3}{6.67 \times 10^{-11} \times 7.36 \times 10^{22}} \][/tex]
2. Calculate the numerator and the denominator separately:
- Numerator: [tex]\( 4 \pi^2 (1.738 \times 10^6)^3 \)[/tex]
- Denominator: [tex]\( G M = 6.67 \times 10^{-11} \times 7.36 \times 10^{22} \)[/tex]
3. Simplify the expression to find [tex]\( T^2 \)[/tex]:
Evaluate the numerator:
[tex]\[ (1.738 \times 10^6)^3 = 5.241 \times 10^{18} (\text{reasoning from given constants}) \][/tex]
Continuing the calculation:
[tex]\[ 4 \pi^2 \cdot 5.241 \times 10^{18} \][/tex]
Evaluate:
[tex]\[ 4 \cdot 9.8696 \cdot 5.241 \times 10^{18} \approx 2.06 \times 10^{20} \][/tex]
Evaluate the denominator:
[tex]\[ 6.67 \times 10^{-11} \times 7.36 \times 10^{22} = 4.91 \times 10^{12} \][/tex]
4. Divide the numerator by the denominator to find [tex]\( T^2 \)[/tex]:
[tex]\[ T^2 = \frac{2.06 \times 10^{20}}{4.91 \times 10^{12}} \approx 4.20 \times 10^{7} \][/tex]
5. Take the square root of [tex]\( T^2 \)[/tex] to find [tex]\( T \)[/tex]:
[tex]\[ T = \sqrt{4.20 \times 10^{7}} \approx 6.50 \times 10^{3} \][/tex]
The period [tex]\( T \)[/tex] of the satellite is approximately [tex]\( 6.50 \times 10^3 \)[/tex] seconds.
Therefore, the correct answer is:
[tex]\[ \boxed{6.50 \times 10^3 \, \text{seconds}} \][/tex]
This corresponds to option C.
[tex]\[ T^2 = \frac{4 \pi^2}{G M} r^3 \][/tex]
where:
- [tex]\( G \)[/tex] is the gravitational constant ([tex]\( 6.67 \times 10^{-11} \, \text{Nm}^2/\text{kg}^2 \)[/tex])
- [tex]\( M \)[/tex] is the mass of the Moon ([tex]\( 7.36 \times 10^{22} \, \text{kg} \)[/tex])
- [tex]\( r \)[/tex] is the radius of the Moon ([tex]\( 1.738 \times 10^6 \, \text{m} \)[/tex])
Let's go through the solution step-by-step:
1. Substitute the known values into the formula:
[tex]\[ T^2 = \frac{4 \pi^2 (1.738 \times 10^6)^3}{6.67 \times 10^{-11} \times 7.36 \times 10^{22}} \][/tex]
2. Calculate the numerator and the denominator separately:
- Numerator: [tex]\( 4 \pi^2 (1.738 \times 10^6)^3 \)[/tex]
- Denominator: [tex]\( G M = 6.67 \times 10^{-11} \times 7.36 \times 10^{22} \)[/tex]
3. Simplify the expression to find [tex]\( T^2 \)[/tex]:
Evaluate the numerator:
[tex]\[ (1.738 \times 10^6)^3 = 5.241 \times 10^{18} (\text{reasoning from given constants}) \][/tex]
Continuing the calculation:
[tex]\[ 4 \pi^2 \cdot 5.241 \times 10^{18} \][/tex]
Evaluate:
[tex]\[ 4 \cdot 9.8696 \cdot 5.241 \times 10^{18} \approx 2.06 \times 10^{20} \][/tex]
Evaluate the denominator:
[tex]\[ 6.67 \times 10^{-11} \times 7.36 \times 10^{22} = 4.91 \times 10^{12} \][/tex]
4. Divide the numerator by the denominator to find [tex]\( T^2 \)[/tex]:
[tex]\[ T^2 = \frac{2.06 \times 10^{20}}{4.91 \times 10^{12}} \approx 4.20 \times 10^{7} \][/tex]
5. Take the square root of [tex]\( T^2 \)[/tex] to find [tex]\( T \)[/tex]:
[tex]\[ T = \sqrt{4.20 \times 10^{7}} \approx 6.50 \times 10^{3} \][/tex]
The period [tex]\( T \)[/tex] of the satellite is approximately [tex]\( 6.50 \times 10^3 \)[/tex] seconds.
Therefore, the correct answer is:
[tex]\[ \boxed{6.50 \times 10^3 \, \text{seconds}} \][/tex]
This corresponds to option C.
We value your presence here. Keep sharing knowledge and helping others find the answers they need. This community is the perfect place to learn together. Thank you for visiting IDNLearn.com. We’re here to provide dependable answers, so visit us again soon.