Dive into the world of knowledge and get your queries resolved at IDNLearn.com. Ask anything and receive prompt, well-informed answers from our community of knowledgeable experts.
Sagot :
To find the period [tex]\( T \)[/tex] of a satellite in a circular orbit just above the surface of the Moon, we will use Kepler's Third Law adapted for circular orbits. The period [tex]\( T \)[/tex] is given by the formula:
[tex]\[ T^2 = \frac{4 \pi^2}{G M} r^3 \][/tex]
where:
- [tex]\( G \)[/tex] is the gravitational constant ([tex]\( 6.67 \times 10^{-11} \, \text{Nm}^2/\text{kg}^2 \)[/tex])
- [tex]\( M \)[/tex] is the mass of the Moon ([tex]\( 7.36 \times 10^{22} \, \text{kg} \)[/tex])
- [tex]\( r \)[/tex] is the radius of the Moon ([tex]\( 1.738 \times 10^6 \, \text{m} \)[/tex])
Let's go through the solution step-by-step:
1. Substitute the known values into the formula:
[tex]\[ T^2 = \frac{4 \pi^2 (1.738 \times 10^6)^3}{6.67 \times 10^{-11} \times 7.36 \times 10^{22}} \][/tex]
2. Calculate the numerator and the denominator separately:
- Numerator: [tex]\( 4 \pi^2 (1.738 \times 10^6)^3 \)[/tex]
- Denominator: [tex]\( G M = 6.67 \times 10^{-11} \times 7.36 \times 10^{22} \)[/tex]
3. Simplify the expression to find [tex]\( T^2 \)[/tex]:
Evaluate the numerator:
[tex]\[ (1.738 \times 10^6)^3 = 5.241 \times 10^{18} (\text{reasoning from given constants}) \][/tex]
Continuing the calculation:
[tex]\[ 4 \pi^2 \cdot 5.241 \times 10^{18} \][/tex]
Evaluate:
[tex]\[ 4 \cdot 9.8696 \cdot 5.241 \times 10^{18} \approx 2.06 \times 10^{20} \][/tex]
Evaluate the denominator:
[tex]\[ 6.67 \times 10^{-11} \times 7.36 \times 10^{22} = 4.91 \times 10^{12} \][/tex]
4. Divide the numerator by the denominator to find [tex]\( T^2 \)[/tex]:
[tex]\[ T^2 = \frac{2.06 \times 10^{20}}{4.91 \times 10^{12}} \approx 4.20 \times 10^{7} \][/tex]
5. Take the square root of [tex]\( T^2 \)[/tex] to find [tex]\( T \)[/tex]:
[tex]\[ T = \sqrt{4.20 \times 10^{7}} \approx 6.50 \times 10^{3} \][/tex]
The period [tex]\( T \)[/tex] of the satellite is approximately [tex]\( 6.50 \times 10^3 \)[/tex] seconds.
Therefore, the correct answer is:
[tex]\[ \boxed{6.50 \times 10^3 \, \text{seconds}} \][/tex]
This corresponds to option C.
[tex]\[ T^2 = \frac{4 \pi^2}{G M} r^3 \][/tex]
where:
- [tex]\( G \)[/tex] is the gravitational constant ([tex]\( 6.67 \times 10^{-11} \, \text{Nm}^2/\text{kg}^2 \)[/tex])
- [tex]\( M \)[/tex] is the mass of the Moon ([tex]\( 7.36 \times 10^{22} \, \text{kg} \)[/tex])
- [tex]\( r \)[/tex] is the radius of the Moon ([tex]\( 1.738 \times 10^6 \, \text{m} \)[/tex])
Let's go through the solution step-by-step:
1. Substitute the known values into the formula:
[tex]\[ T^2 = \frac{4 \pi^2 (1.738 \times 10^6)^3}{6.67 \times 10^{-11} \times 7.36 \times 10^{22}} \][/tex]
2. Calculate the numerator and the denominator separately:
- Numerator: [tex]\( 4 \pi^2 (1.738 \times 10^6)^3 \)[/tex]
- Denominator: [tex]\( G M = 6.67 \times 10^{-11} \times 7.36 \times 10^{22} \)[/tex]
3. Simplify the expression to find [tex]\( T^2 \)[/tex]:
Evaluate the numerator:
[tex]\[ (1.738 \times 10^6)^3 = 5.241 \times 10^{18} (\text{reasoning from given constants}) \][/tex]
Continuing the calculation:
[tex]\[ 4 \pi^2 \cdot 5.241 \times 10^{18} \][/tex]
Evaluate:
[tex]\[ 4 \cdot 9.8696 \cdot 5.241 \times 10^{18} \approx 2.06 \times 10^{20} \][/tex]
Evaluate the denominator:
[tex]\[ 6.67 \times 10^{-11} \times 7.36 \times 10^{22} = 4.91 \times 10^{12} \][/tex]
4. Divide the numerator by the denominator to find [tex]\( T^2 \)[/tex]:
[tex]\[ T^2 = \frac{2.06 \times 10^{20}}{4.91 \times 10^{12}} \approx 4.20 \times 10^{7} \][/tex]
5. Take the square root of [tex]\( T^2 \)[/tex] to find [tex]\( T \)[/tex]:
[tex]\[ T = \sqrt{4.20 \times 10^{7}} \approx 6.50 \times 10^{3} \][/tex]
The period [tex]\( T \)[/tex] of the satellite is approximately [tex]\( 6.50 \times 10^3 \)[/tex] seconds.
Therefore, the correct answer is:
[tex]\[ \boxed{6.50 \times 10^3 \, \text{seconds}} \][/tex]
This corresponds to option C.
Thank you for joining our conversation. Don't hesitate to return anytime to find answers to your questions. Let's continue sharing knowledge and experiences! Trust IDNLearn.com for all your queries. We appreciate your visit and hope to assist you again soon.