Join the conversation on IDNLearn.com and get the answers you seek from experts. Find the solutions you need quickly and accurately with help from our knowledgeable community.
Sagot :
Let's solve this step-by-step by using the combined gas law:
[tex]\[ \frac{P_1 V_1}{T_1} = \frac{P_2 V_2}{T_2} \][/tex]
where:
- [tex]\( P_1 \)[/tex] and [tex]\( P_2 \)[/tex] are the initial and final pressures,
- [tex]\( V_1 \)[/tex] and [tex]\( V_2 \)[/tex] are the initial and final volumes,
- [tex]\( T_1 \)[/tex] and [tex]\( T_2 \)[/tex] are the initial and final temperatures in Kelvin.
### Given:
- Initial temperature ([tex]\(T_1\)[/tex]) = 95°C
- Increase in volume = 25% of the original volume
- Decrease in pressure = one-third of the original pressure
### Step 1: Convert the initial temperature to Kelvin
To work with temperatures in the gas law, we need to convert Celsius to Kelvin. The formula for this is:
[tex]\[ T(\text{K}) = T(\text{C}) + 273.15 \][/tex]
So,
[tex]\[ T_1 = 95 + 273.15 = 368.15 \text{ K} \][/tex]
### Step 2: Calculate the new volume
The volume is increased by 25% of the original volume.
[tex]\[ V_2 = V_1 + 0.25V_1 = 1.25V_1 \][/tex]
Therefore, the ratio of [tex]\( \frac{V_2}{V_1} \)[/tex] is:
[tex]\[ \frac{V_2}{V_1} = 1.25 \][/tex]
### Step 3: Calculate the new pressure
The pressure is decreased by one-third of the original pressure.
[tex]\[ P_2 = P_1 - \frac{1}{3} P_1 = \frac{2}{3} P_1 \][/tex]
Therefore, the ratio of [tex]\( \frac{P_2}{P_1} \)[/tex] is:
[tex]\[ \frac{P_2}{P_1} = \frac{2}{3} \approx 0.6667 \][/tex]
### Step 4: Apply the combined gas law
Since [tex]\( \frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_2} \)[/tex], we can solve for [tex]\( T_2 \)[/tex]:
[tex]\[ T_2 = T_1 \times \frac{V_2}{V_1} \times \frac{P_2}{P_1} \][/tex]
[tex]\[ T_2 = 368.15 \times 1.25 \times 0.6667 \][/tex]
### Step 5: Calculate [tex]\( T_2 \)[/tex]
From the given values, we obtain:
[tex]\[ T_2 \approx 368.15 \times 1.25 \times 0.6667 = 306.7916666666667 \text{ K} \][/tex]
### Step 6: Convert [tex]\( T_2 \)[/tex] back to Celsius
To convert the final temperature back to Celsius:
[tex]\[ T(\text{C}) = T(\text{K}) - 273.15 \][/tex]
[tex]\[ T_2(\text{C}) \approx 306.7916666666667 - 273.15 = 33.64166666666671^\circ \text{C} \][/tex]
### Result:
The new temperature of the gas, when its original temperature is 95°C, the volume is increased by 25%, and the pressure is decreased by one-third, is approximately:
[tex]\[ 33.64^\circ \text{C} \][/tex]
[tex]\[ \frac{P_1 V_1}{T_1} = \frac{P_2 V_2}{T_2} \][/tex]
where:
- [tex]\( P_1 \)[/tex] and [tex]\( P_2 \)[/tex] are the initial and final pressures,
- [tex]\( V_1 \)[/tex] and [tex]\( V_2 \)[/tex] are the initial and final volumes,
- [tex]\( T_1 \)[/tex] and [tex]\( T_2 \)[/tex] are the initial and final temperatures in Kelvin.
### Given:
- Initial temperature ([tex]\(T_1\)[/tex]) = 95°C
- Increase in volume = 25% of the original volume
- Decrease in pressure = one-third of the original pressure
### Step 1: Convert the initial temperature to Kelvin
To work with temperatures in the gas law, we need to convert Celsius to Kelvin. The formula for this is:
[tex]\[ T(\text{K}) = T(\text{C}) + 273.15 \][/tex]
So,
[tex]\[ T_1 = 95 + 273.15 = 368.15 \text{ K} \][/tex]
### Step 2: Calculate the new volume
The volume is increased by 25% of the original volume.
[tex]\[ V_2 = V_1 + 0.25V_1 = 1.25V_1 \][/tex]
Therefore, the ratio of [tex]\( \frac{V_2}{V_1} \)[/tex] is:
[tex]\[ \frac{V_2}{V_1} = 1.25 \][/tex]
### Step 3: Calculate the new pressure
The pressure is decreased by one-third of the original pressure.
[tex]\[ P_2 = P_1 - \frac{1}{3} P_1 = \frac{2}{3} P_1 \][/tex]
Therefore, the ratio of [tex]\( \frac{P_2}{P_1} \)[/tex] is:
[tex]\[ \frac{P_2}{P_1} = \frac{2}{3} \approx 0.6667 \][/tex]
### Step 4: Apply the combined gas law
Since [tex]\( \frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_2} \)[/tex], we can solve for [tex]\( T_2 \)[/tex]:
[tex]\[ T_2 = T_1 \times \frac{V_2}{V_1} \times \frac{P_2}{P_1} \][/tex]
[tex]\[ T_2 = 368.15 \times 1.25 \times 0.6667 \][/tex]
### Step 5: Calculate [tex]\( T_2 \)[/tex]
From the given values, we obtain:
[tex]\[ T_2 \approx 368.15 \times 1.25 \times 0.6667 = 306.7916666666667 \text{ K} \][/tex]
### Step 6: Convert [tex]\( T_2 \)[/tex] back to Celsius
To convert the final temperature back to Celsius:
[tex]\[ T(\text{C}) = T(\text{K}) - 273.15 \][/tex]
[tex]\[ T_2(\text{C}) \approx 306.7916666666667 - 273.15 = 33.64166666666671^\circ \text{C} \][/tex]
### Result:
The new temperature of the gas, when its original temperature is 95°C, the volume is increased by 25%, and the pressure is decreased by one-third, is approximately:
[tex]\[ 33.64^\circ \text{C} \][/tex]
Thank you for being part of this discussion. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. Your search for answers ends at IDNLearn.com. Thanks for visiting, and we look forward to helping you again soon.