From simple queries to complex problems, IDNLearn.com provides reliable answers. Join our Q&A platform to access reliable and detailed answers from experts in various fields.
Sagot :
Let's solve this step-by-step:
### Step 1: Given Data
We are given the following initial equilibrium concentrations:
- [tex]\([N_2]_{\text{initial}} = 0.100 \text{ M}\)[/tex]
- [tex]\([O_2]_{\text{initial}} = 0.100 \text{ M}\)[/tex]
- [tex]\([NO]_{\text{initial}} = 0.500 \text{ M}\)[/tex]
And new concentration of NO:
- [tex]\([NO]_{\text{added}} = 0.800 \text{ M}\)[/tex]
### Step 2: Determine the Equilibrium Constant ([tex]\(K_{eq}\)[/tex])
The reaction is:
[tex]\[ N_2(g) + O_2(g) \rightleftharpoons 2 NO(g) \][/tex]
The equilibrium constant expression for the reaction is:
[tex]\[ K_{eq} = \frac{[NO]^2}{[N_2][O_2]} \][/tex]
Using the initial equilibrium concentrations:
[tex]\[ K_{eq} = \frac{(0.500)^2}{(0.100)(0.100)} = \frac{0.250}{0.010} = 25 \][/tex]
### Step 3: Set Up the Change in Concentration
Let [tex]\(x\)[/tex] represent the change in concentration of [tex]\(NO\)[/tex] that will occur to re-establish equilibrium. Thus:
- The change in [tex]\([NO]\)[/tex] will be [tex]\(2x\)[/tex], as two moles of NO are involved for each mole of [tex]\(N_2\)[/tex] and [tex]\(O_2\)[/tex].
- Since [tex]\(N_2\)[/tex] and [tex]\(O_2\)[/tex] each react with one mole, their increase in concentration will each be [tex]\(x\)[/tex].
Thus, the concentrations at new equilibrium will be:
- [tex]\([NO] = 0.800 - 2x\)[/tex]
- [tex]\([N_2] = 0.100 + x\)[/tex]
- [tex]\([O_2] = 0.100 + x\)[/tex]
### Step 4: Set Up the Equilibrium Expression with the New Concentrations
Using the expression for [tex]\(K_{eq}\)[/tex]:
[tex]\[ K_{eq} = \frac{(0.800 - 2x)^2}{(0.100 + x)(0.100 + x)} \][/tex]
### Step 5: Substitute the Equilibrium Constant and Solve for x
We substitute [tex]\(K_{eq} = 25\)[/tex]:
[tex]\[ 25 = \frac{(0.800 - 2x)^2}{(0.100 + x)(0.100 + x)} \][/tex]
After solving this quadratic equation, we find the positive value of [tex]\(x\)[/tex]. The solution to this equation results in:
[tex]\[ x = 0.042857 \][/tex]
### Step 6: Calculate the Final Concentration of NO
Using the value of [tex]\(x\)[/tex], we can find the final concentration of NO:
[tex]\[ [NO]_{\text{final}} = 0.800 - 2x = 0.800 - 2(0.042857) = 0.800 - 0.085714 = 0.714286 \text{ M} \][/tex]
### Conclusion
The final concentration of NO after equilibrium is re-established is:
[tex]\[ [NO]_{\text{final}} = 0.714286 \text{ M} \][/tex]
### Step 1: Given Data
We are given the following initial equilibrium concentrations:
- [tex]\([N_2]_{\text{initial}} = 0.100 \text{ M}\)[/tex]
- [tex]\([O_2]_{\text{initial}} = 0.100 \text{ M}\)[/tex]
- [tex]\([NO]_{\text{initial}} = 0.500 \text{ M}\)[/tex]
And new concentration of NO:
- [tex]\([NO]_{\text{added}} = 0.800 \text{ M}\)[/tex]
### Step 2: Determine the Equilibrium Constant ([tex]\(K_{eq}\)[/tex])
The reaction is:
[tex]\[ N_2(g) + O_2(g) \rightleftharpoons 2 NO(g) \][/tex]
The equilibrium constant expression for the reaction is:
[tex]\[ K_{eq} = \frac{[NO]^2}{[N_2][O_2]} \][/tex]
Using the initial equilibrium concentrations:
[tex]\[ K_{eq} = \frac{(0.500)^2}{(0.100)(0.100)} = \frac{0.250}{0.010} = 25 \][/tex]
### Step 3: Set Up the Change in Concentration
Let [tex]\(x\)[/tex] represent the change in concentration of [tex]\(NO\)[/tex] that will occur to re-establish equilibrium. Thus:
- The change in [tex]\([NO]\)[/tex] will be [tex]\(2x\)[/tex], as two moles of NO are involved for each mole of [tex]\(N_2\)[/tex] and [tex]\(O_2\)[/tex].
- Since [tex]\(N_2\)[/tex] and [tex]\(O_2\)[/tex] each react with one mole, their increase in concentration will each be [tex]\(x\)[/tex].
Thus, the concentrations at new equilibrium will be:
- [tex]\([NO] = 0.800 - 2x\)[/tex]
- [tex]\([N_2] = 0.100 + x\)[/tex]
- [tex]\([O_2] = 0.100 + x\)[/tex]
### Step 4: Set Up the Equilibrium Expression with the New Concentrations
Using the expression for [tex]\(K_{eq}\)[/tex]:
[tex]\[ K_{eq} = \frac{(0.800 - 2x)^2}{(0.100 + x)(0.100 + x)} \][/tex]
### Step 5: Substitute the Equilibrium Constant and Solve for x
We substitute [tex]\(K_{eq} = 25\)[/tex]:
[tex]\[ 25 = \frac{(0.800 - 2x)^2}{(0.100 + x)(0.100 + x)} \][/tex]
After solving this quadratic equation, we find the positive value of [tex]\(x\)[/tex]. The solution to this equation results in:
[tex]\[ x = 0.042857 \][/tex]
### Step 6: Calculate the Final Concentration of NO
Using the value of [tex]\(x\)[/tex], we can find the final concentration of NO:
[tex]\[ [NO]_{\text{final}} = 0.800 - 2x = 0.800 - 2(0.042857) = 0.800 - 0.085714 = 0.714286 \text{ M} \][/tex]
### Conclusion
The final concentration of NO after equilibrium is re-established is:
[tex]\[ [NO]_{\text{final}} = 0.714286 \text{ M} \][/tex]
We value your presence here. Keep sharing knowledge and helping others find the answers they need. This community is the perfect place to learn together. Thank you for choosing IDNLearn.com. We’re here to provide reliable answers, so please visit us again for more solutions.