IDNLearn.com is your go-to platform for finding accurate and reliable answers. Discover reliable and timely information on any topic from our network of knowledgeable professionals.
Sagot :
Certainly! Let's solve this problem using Coulomb's law step-by-step. Recall Coulomb's law:
[tex]\[ F = k \frac{q_1 q_2}{r^2} \][/tex]
where:
- [tex]\( F \)[/tex] is the magnitude of the force between the two charges.
- [tex]\( k \)[/tex] is Coulomb's constant ([tex]\( k = 8.99 \times 10^9 \, \text{N m}^2 / \text{C}^2 \)[/tex]).
- [tex]\( q_1 \)[/tex] and [tex]\( q_2 \)[/tex] are the magnitudes of the charges.
- [tex]\( r \)[/tex] is the distance between the charges.
We are given the following values:
- The charges [tex]\( q_1 \)[/tex] and [tex]\( q_2 \)[/tex] are both [tex]\( e = 1.6 \times 10^{-19} \, \text{C} \)[/tex].
- The distance [tex]\( r \)[/tex] between the charges is [tex]\( 10^{-16} \, \text{m} \)[/tex].
Step-by-Step Solution:
1. Write down the known values:
- [tex]\( q_1 = 1.6 \times 10^{-19} \, \text{C} \)[/tex]
- [tex]\( q_2 = 1.6 \times 10^{-19} \, \text{C} \)[/tex]
- [tex]\( r = 10^{-16} \, \text{m} \)[/tex]
- [tex]\( k = 8.99 \times 10^9 \, \text{N m}^2 / \text{C}^2 \)[/tex]
2. Substitute these values into Coulomb's law formula.
[tex]\[ F = 8.99 \times 10^9 \, \frac{(1.6 \times 10^{-19}) (1.6 \times 10^{-19})}{(10^{-16})^2} \][/tex]
3. Calculate the product of the charges.
[tex]\[ (1.6 \times 10^{-19}) (1.6 \times 10^{-19}) = 2.56 \times 10^{-38} \, \text{C}^2 \][/tex]
4. Calculate the square of the distance.
[tex]\[ (10^{-16})^2 = 10^{-32} \, \text{m}^2 \][/tex]
5. Substitute these values into the formula:
[tex]\[ F = 8.99 \times 10^9 \, \frac{2.56 \times 10^{-38}}{10^{-32}} \][/tex]
6. Simplify the exponentiation in the denominator:
[tex]\[ \frac{10^{-38}}{10^{-32}} = 10^{-6} \][/tex]
7. Continue the calculation:
[tex]\[ F = 8.99 \times 10^9 \, \times 2.56 \times 10^{-6} \][/tex]
8. Multiply the constants:
[tex]\[ F = 23.0144 \, \text{N} \][/tex]
After following this step-wise calculation, we find the electrical force between these two particles to be approximately [tex]\( 23,014.4 \, \text{N} \)[/tex].
Therefore, the answer is:
[tex]\[ \boxed{23,000 \, \text{N}} \][/tex]
[tex]\[ F = k \frac{q_1 q_2}{r^2} \][/tex]
where:
- [tex]\( F \)[/tex] is the magnitude of the force between the two charges.
- [tex]\( k \)[/tex] is Coulomb's constant ([tex]\( k = 8.99 \times 10^9 \, \text{N m}^2 / \text{C}^2 \)[/tex]).
- [tex]\( q_1 \)[/tex] and [tex]\( q_2 \)[/tex] are the magnitudes of the charges.
- [tex]\( r \)[/tex] is the distance between the charges.
We are given the following values:
- The charges [tex]\( q_1 \)[/tex] and [tex]\( q_2 \)[/tex] are both [tex]\( e = 1.6 \times 10^{-19} \, \text{C} \)[/tex].
- The distance [tex]\( r \)[/tex] between the charges is [tex]\( 10^{-16} \, \text{m} \)[/tex].
Step-by-Step Solution:
1. Write down the known values:
- [tex]\( q_1 = 1.6 \times 10^{-19} \, \text{C} \)[/tex]
- [tex]\( q_2 = 1.6 \times 10^{-19} \, \text{C} \)[/tex]
- [tex]\( r = 10^{-16} \, \text{m} \)[/tex]
- [tex]\( k = 8.99 \times 10^9 \, \text{N m}^2 / \text{C}^2 \)[/tex]
2. Substitute these values into Coulomb's law formula.
[tex]\[ F = 8.99 \times 10^9 \, \frac{(1.6 \times 10^{-19}) (1.6 \times 10^{-19})}{(10^{-16})^2} \][/tex]
3. Calculate the product of the charges.
[tex]\[ (1.6 \times 10^{-19}) (1.6 \times 10^{-19}) = 2.56 \times 10^{-38} \, \text{C}^2 \][/tex]
4. Calculate the square of the distance.
[tex]\[ (10^{-16})^2 = 10^{-32} \, \text{m}^2 \][/tex]
5. Substitute these values into the formula:
[tex]\[ F = 8.99 \times 10^9 \, \frac{2.56 \times 10^{-38}}{10^{-32}} \][/tex]
6. Simplify the exponentiation in the denominator:
[tex]\[ \frac{10^{-38}}{10^{-32}} = 10^{-6} \][/tex]
7. Continue the calculation:
[tex]\[ F = 8.99 \times 10^9 \, \times 2.56 \times 10^{-6} \][/tex]
8. Multiply the constants:
[tex]\[ F = 23.0144 \, \text{N} \][/tex]
After following this step-wise calculation, we find the electrical force between these two particles to be approximately [tex]\( 23,014.4 \, \text{N} \)[/tex].
Therefore, the answer is:
[tex]\[ \boxed{23,000 \, \text{N}} \][/tex]
We appreciate your contributions to this forum. Don't forget to check back for the latest answers. Keep asking, answering, and sharing useful information. IDNLearn.com is your source for precise answers. Thank you for visiting, and we look forward to helping you again soon.