Find the best solutions to your problems with the help of IDNLearn.com's expert users. Discover detailed and accurate answers to your questions from our knowledgeable and dedicated community members.

Use these two constants for the question that follows:
[tex]e = 1.6 \times 10^{-19} \, C[/tex]
[tex]k = 8.99 \times 10^9 \, N \, m^2 / C^2[/tex]

Two positive charges are [tex]10^{-16} \, m[/tex] away from each other. Using Coulomb's law, which of the following is the electrical force between these two particles?

A. [tex]14,000 \, N[/tex]
B. [tex]16,000 \, N[/tex]
C. [tex]23,000 \, N[/tex]
D. [tex]28,000 \, N[/tex]


Sagot :

Certainly! Let's solve this problem using Coulomb's law step-by-step. Recall Coulomb's law:

[tex]\[ F = k \frac{q_1 q_2}{r^2} \][/tex]

where:
- [tex]\( F \)[/tex] is the magnitude of the force between the two charges.
- [tex]\( k \)[/tex] is Coulomb's constant ([tex]\( k = 8.99 \times 10^9 \, \text{N m}^2 / \text{C}^2 \)[/tex]).
- [tex]\( q_1 \)[/tex] and [tex]\( q_2 \)[/tex] are the magnitudes of the charges.
- [tex]\( r \)[/tex] is the distance between the charges.

We are given the following values:
- The charges [tex]\( q_1 \)[/tex] and [tex]\( q_2 \)[/tex] are both [tex]\( e = 1.6 \times 10^{-19} \, \text{C} \)[/tex].
- The distance [tex]\( r \)[/tex] between the charges is [tex]\( 10^{-16} \, \text{m} \)[/tex].

Step-by-Step Solution:
1. Write down the known values:
- [tex]\( q_1 = 1.6 \times 10^{-19} \, \text{C} \)[/tex]
- [tex]\( q_2 = 1.6 \times 10^{-19} \, \text{C} \)[/tex]
- [tex]\( r = 10^{-16} \, \text{m} \)[/tex]
- [tex]\( k = 8.99 \times 10^9 \, \text{N m}^2 / \text{C}^2 \)[/tex]

2. Substitute these values into Coulomb's law formula.
[tex]\[ F = 8.99 \times 10^9 \, \frac{(1.6 \times 10^{-19}) (1.6 \times 10^{-19})}{(10^{-16})^2} \][/tex]

3. Calculate the product of the charges.
[tex]\[ (1.6 \times 10^{-19}) (1.6 \times 10^{-19}) = 2.56 \times 10^{-38} \, \text{C}^2 \][/tex]

4. Calculate the square of the distance.
[tex]\[ (10^{-16})^2 = 10^{-32} \, \text{m}^2 \][/tex]

5. Substitute these values into the formula:
[tex]\[ F = 8.99 \times 10^9 \, \frac{2.56 \times 10^{-38}}{10^{-32}} \][/tex]

6. Simplify the exponentiation in the denominator:
[tex]\[ \frac{10^{-38}}{10^{-32}} = 10^{-6} \][/tex]

7. Continue the calculation:
[tex]\[ F = 8.99 \times 10^9 \, \times 2.56 \times 10^{-6} \][/tex]

8. Multiply the constants:
[tex]\[ F = 23.0144 \, \text{N} \][/tex]

After following this step-wise calculation, we find the electrical force between these two particles to be approximately [tex]\( 23,014.4 \, \text{N} \)[/tex].

Therefore, the answer is:

[tex]\[ \boxed{23,000 \, \text{N}} \][/tex]