IDNLearn.com is committed to providing high-quality answers to your questions. Find the information you need quickly and easily with our comprehensive and accurate Q&A platform.
Sagot :
To determine the value of [tex]\(\lambda\)[/tex] such that the function
[tex]\[ f(x) = \begin{cases} \frac{1 - \cos x}{x^2}, & \text{if } x \neq 0 \\ \lambda, & \text{if } x = 0 \end{cases} \][/tex]
is continuous at [tex]\( x = 0 \)[/tex], we need to ensure that the limit of [tex]\( f(x) \)[/tex] as [tex]\( x \)[/tex] approaches [tex]\( 0 \)[/tex] is equal to [tex]\( f(0) \)[/tex]. Mathematically, this condition for continuity at [tex]\( x = 0 \)[/tex] is expressed as:
[tex]\[ \lim_{x \to 0} f(x) = f(0) = \lambda \][/tex]
Hence, we need to calculate the limit:
[tex]\[ \lim_{x \to 0} \frac{1 - \cos x}{x^2} \][/tex]
To evaluate this limit, let's recognize that direct substitution of [tex]\( x = 0 \)[/tex] leads to an indeterminate form [tex]\( \frac{0}{0} \)[/tex]. Hence, we use L'Hôpital's Rule, which is suitable for limits of the form [tex]\(\frac{0}{0}\)[/tex] or [tex]\(\frac{\infty}{\infty}\)[/tex]. L'Hôpital's Rule states that:
[tex]\[ \lim_{x \to 0} \frac{f(x)}{g(x)} = \lim_{x \to 0} \frac{f'(x)}{g'(x)} \][/tex]
First, let's identify [tex]\( f(x) = 1 - \cos x \)[/tex] and [tex]\( g(x) = x^2 \)[/tex].
We then find their derivatives:
[tex]\[ f'(x) = \frac{d}{dx}(1 - \cos x) = \sin x \][/tex]
[tex]\[ g'(x) = \frac{d}{dx}(x^2) = 2x \][/tex]
Applying L'Hôpital's Rule:
[tex]\[ \lim_{x \to 0} \frac{1 - \cos x}{x^2} = \lim_{x \to 0} \frac{\sin x}{2x} \][/tex]
Now, we can use the known limit [tex]\(\lim_{x \to 0} \frac{\sin x}{x} = 1\)[/tex]:
[tex]\[ \lim_{x \to 0} \frac{\sin x}{2x} = \frac{1}{2} \][/tex]
Thus,
[tex]\[ \lim_{x \to 0} \frac{1 - \cos x}{x^2} = \frac{1}{2} \][/tex]
So, to ensure [tex]\( f(x) \)[/tex] is continuous at [tex]\( x = 0 \)[/tex], we set the value of [tex]\(\lambda\)[/tex] equal to this limit:
[tex]\[ \lambda = \frac{1}{2} \][/tex]
Therefore, the value of [tex]\(\lambda\)[/tex] for the function [tex]\( f(x) \)[/tex] to be continuous at [tex]\( x = 0 \)[/tex] is:
[tex]\[ \boxed{\frac{1}{2}} \][/tex]
[tex]\[ f(x) = \begin{cases} \frac{1 - \cos x}{x^2}, & \text{if } x \neq 0 \\ \lambda, & \text{if } x = 0 \end{cases} \][/tex]
is continuous at [tex]\( x = 0 \)[/tex], we need to ensure that the limit of [tex]\( f(x) \)[/tex] as [tex]\( x \)[/tex] approaches [tex]\( 0 \)[/tex] is equal to [tex]\( f(0) \)[/tex]. Mathematically, this condition for continuity at [tex]\( x = 0 \)[/tex] is expressed as:
[tex]\[ \lim_{x \to 0} f(x) = f(0) = \lambda \][/tex]
Hence, we need to calculate the limit:
[tex]\[ \lim_{x \to 0} \frac{1 - \cos x}{x^2} \][/tex]
To evaluate this limit, let's recognize that direct substitution of [tex]\( x = 0 \)[/tex] leads to an indeterminate form [tex]\( \frac{0}{0} \)[/tex]. Hence, we use L'Hôpital's Rule, which is suitable for limits of the form [tex]\(\frac{0}{0}\)[/tex] or [tex]\(\frac{\infty}{\infty}\)[/tex]. L'Hôpital's Rule states that:
[tex]\[ \lim_{x \to 0} \frac{f(x)}{g(x)} = \lim_{x \to 0} \frac{f'(x)}{g'(x)} \][/tex]
First, let's identify [tex]\( f(x) = 1 - \cos x \)[/tex] and [tex]\( g(x) = x^2 \)[/tex].
We then find their derivatives:
[tex]\[ f'(x) = \frac{d}{dx}(1 - \cos x) = \sin x \][/tex]
[tex]\[ g'(x) = \frac{d}{dx}(x^2) = 2x \][/tex]
Applying L'Hôpital's Rule:
[tex]\[ \lim_{x \to 0} \frac{1 - \cos x}{x^2} = \lim_{x \to 0} \frac{\sin x}{2x} \][/tex]
Now, we can use the known limit [tex]\(\lim_{x \to 0} \frac{\sin x}{x} = 1\)[/tex]:
[tex]\[ \lim_{x \to 0} \frac{\sin x}{2x} = \frac{1}{2} \][/tex]
Thus,
[tex]\[ \lim_{x \to 0} \frac{1 - \cos x}{x^2} = \frac{1}{2} \][/tex]
So, to ensure [tex]\( f(x) \)[/tex] is continuous at [tex]\( x = 0 \)[/tex], we set the value of [tex]\(\lambda\)[/tex] equal to this limit:
[tex]\[ \lambda = \frac{1}{2} \][/tex]
Therefore, the value of [tex]\(\lambda\)[/tex] for the function [tex]\( f(x) \)[/tex] to be continuous at [tex]\( x = 0 \)[/tex] is:
[tex]\[ \boxed{\frac{1}{2}} \][/tex]
Thank you for being part of this discussion. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. IDNLearn.com is committed to your satisfaction. Thank you for visiting, and see you next time for more helpful answers.