IDNLearn.com provides a reliable platform for finding accurate and timely answers. Our platform provides accurate, detailed responses to help you navigate any topic with ease.
Sagot :
To solve this problem using the compound interest formula:
[tex]\[ A = P \left(1 + \frac{r}{n} \right)^{nt} \][/tex]
We need to find the time [tex]\( t \)[/tex] it takes for the initial amount [tex]\( P \)[/tex] to double given the annual interest rate [tex]\( r \)[/tex] compounded quarterly.
1. Identify given values:
- Initial principal [tex]\( P = \$1200.00 \)[/tex]
- Final amount [tex]\( A \)[/tex] when the investment doubles, so [tex]\( A = 2 \times P = 2 \times 1200.00 = \$2400.00 \)[/tex]
- Annual interest rate [tex]\( r = 0.03 \)[/tex]
- Number of times interest is compounded per year [tex]\( n = 4 \)[/tex]
2. Set up the compound interest formula:
[tex]\[ 2400 = 1200 \left(1 + \frac{0.03}{4} \right)^{4t} \][/tex]
3. Simplify inside the parentheses:
[tex]\[ 1 + \frac{0.03}{4} = 1 + 0.0075 = 1.0075 \][/tex]
4. Substitute and simplify the equation:
[tex]\[ 2400 = 1200 \left(1.0075\right)^{4t} \][/tex]
5. Divide both sides of the equation by 1200:
[tex]\[ 2 = \left(1.0075\right)^{4t} \][/tex]
6. Take the natural logarithm (ln) of both sides to solve for [tex]\( t \)[/tex]:
[tex]\[ \ln(2) = \ln\left(\left(1.0075\right)^{4t}\right) \][/tex]
7. Apply the power rule of logarithms [tex]\( \ln\left(a^b\right) = b \ln(a) \)[/tex]:
[tex]\[ \ln(2) = 4t \cdot \ln(1.0075) \][/tex]
8. Isolate [tex]\( t \)[/tex]:
[tex]\[ t = \frac{\ln(2)}{4 \cdot \ln(1.0075)} \][/tex]
9. Calculate the values using known logarithms:
[tex]\[ t = \frac{\ln(2)}{4 \cdot \ln(1.0075)} \approx \frac{0.693147}{4 \cdot 0.007481} \approx \frac{0.693147}{0.029924} \][/tex]
10. Complete the division to find [tex]\( t \)[/tex]:
[tex]\[ t \approx 23.191 \][/tex]
So, it will take approximately 23.191 years for the initial amount of [tex]\( \$1200.00 \)[/tex] to double when invested at an interest rate of [tex]\( 3\% \)[/tex] compounded quarterly.
[tex]\[ A = P \left(1 + \frac{r}{n} \right)^{nt} \][/tex]
We need to find the time [tex]\( t \)[/tex] it takes for the initial amount [tex]\( P \)[/tex] to double given the annual interest rate [tex]\( r \)[/tex] compounded quarterly.
1. Identify given values:
- Initial principal [tex]\( P = \$1200.00 \)[/tex]
- Final amount [tex]\( A \)[/tex] when the investment doubles, so [tex]\( A = 2 \times P = 2 \times 1200.00 = \$2400.00 \)[/tex]
- Annual interest rate [tex]\( r = 0.03 \)[/tex]
- Number of times interest is compounded per year [tex]\( n = 4 \)[/tex]
2. Set up the compound interest formula:
[tex]\[ 2400 = 1200 \left(1 + \frac{0.03}{4} \right)^{4t} \][/tex]
3. Simplify inside the parentheses:
[tex]\[ 1 + \frac{0.03}{4} = 1 + 0.0075 = 1.0075 \][/tex]
4. Substitute and simplify the equation:
[tex]\[ 2400 = 1200 \left(1.0075\right)^{4t} \][/tex]
5. Divide both sides of the equation by 1200:
[tex]\[ 2 = \left(1.0075\right)^{4t} \][/tex]
6. Take the natural logarithm (ln) of both sides to solve for [tex]\( t \)[/tex]:
[tex]\[ \ln(2) = \ln\left(\left(1.0075\right)^{4t}\right) \][/tex]
7. Apply the power rule of logarithms [tex]\( \ln\left(a^b\right) = b \ln(a) \)[/tex]:
[tex]\[ \ln(2) = 4t \cdot \ln(1.0075) \][/tex]
8. Isolate [tex]\( t \)[/tex]:
[tex]\[ t = \frac{\ln(2)}{4 \cdot \ln(1.0075)} \][/tex]
9. Calculate the values using known logarithms:
[tex]\[ t = \frac{\ln(2)}{4 \cdot \ln(1.0075)} \approx \frac{0.693147}{4 \cdot 0.007481} \approx \frac{0.693147}{0.029924} \][/tex]
10. Complete the division to find [tex]\( t \)[/tex]:
[tex]\[ t \approx 23.191 \][/tex]
So, it will take approximately 23.191 years for the initial amount of [tex]\( \$1200.00 \)[/tex] to double when invested at an interest rate of [tex]\( 3\% \)[/tex] compounded quarterly.
Thank you for using this platform to share and learn. Keep asking and answering. We appreciate every contribution you make. Thank you for choosing IDNLearn.com. We’re committed to providing accurate answers, so visit us again soon.