IDNLearn.com is the perfect place to get detailed and accurate answers to your questions. Get accurate and comprehensive answers to your questions from our community of knowledgeable professionals.

2) Evaluate the integral:
[tex]\[ \int_1^2 \frac{\ln (x)}{x^2} \, dx \][/tex]


Sagot :

To solve the definite integral [tex]\(\int_1^2 \frac{\ln(x)}{x^2} \, dx\)[/tex], follow these steps:

1. Identify the integral and substitution: Notice that the integrand involves both [tex]\(\ln(x)\)[/tex] and a power of [tex]\(x\)[/tex]. A useful substitution would be [tex]\( u = \ln(x) \)[/tex]. Consequently, we have [tex]\( du = \frac{1}{x} \, dx \)[/tex]. Also, [tex]\(\frac{dx}{x} = du\)[/tex].

2. Change the limits of integration: With [tex]\(x = 1\)[/tex], we get [tex]\( u = \ln(1) = 0 \)[/tex]. With [tex]\(x = 2\)[/tex], we get [tex]\( u = \ln(2) \)[/tex]. So the integral limits change from [tex]\(x \in[1, 2]\)[/tex] to [tex]\(u \in[0, \ln(2)]\)[/tex].

3. Rewrite the integrand: The given integral becomes:
[tex]\[ \int_1^2 \frac{\ln(x)}{x^2} \, dx = \int_{\ln(1)}^{\ln(2)} \frac{u}{e^u} \, du \][/tex]
Here, we used the fact that [tex]\(x = e^u\)[/tex].

4. Simplify the integrand: Note that:
[tex]\[ \frac{u}{e^u} \text{ is a straightforward integration since } \int \frac{u}{e^u} \, du \][/tex]
We can use integration by parts where [tex]\( v = u \)[/tex] and [tex]\( dv = \frac{1}{e^u} \, du \)[/tex].

5. Apply integration by parts: Let [tex]\( u = u \)[/tex] and [tex]\( dv = \frac{1}{e^u} \, du \)[/tex]:
[tex]\[ \text{Choose } u = u \implies du = du \][/tex]
[tex]\[ \text{Choose } dv = \frac{1}{e^u} \implies v = \int \frac{1}{e^u} \, du = -\frac{1}{e^u} \][/tex]
So by the integration by parts formula, [tex]\(\int u \, dv = uv - \int v \, du\)[/tex]:
[tex]\[ \int \frac{u}{e^u} \, du = -\frac{u}{e^u} - \int -\frac{1}{e^u} \, du = -\frac{u}{e^u} + \int \frac{1}{e^u} \, du \][/tex]
Since [tex]\(\int \frac{1}{e^u} \, du = -\frac{1}{e^u}\)[/tex], we have:
[tex]\[ \int \frac{u}{e^u} \, du = -\frac{u}{e^u} - \frac{1}{e^u} \][/tex]

6. Evaluate the definite integral: Substitute back the limits [tex]\( u = 0 \)[/tex] to [tex]\( u = \ln(2) \)[/tex]:
[tex]\[ \left. -\frac{u}{e^u} - \frac{1}{e^u} \right|_{0}^{\ln(2)} \][/tex]
Calculate at the boundaries:
[tex]\[ \left( -\frac{\ln(2)}{e^{\ln(2)}} - \frac{1}{e^{\ln(2)}} \right) - \left( -\frac{0}{e^0} - \frac{1}{e^0} \right) \][/tex]
Simplify using [tex]\(e^{\ln(2)} = 2\)[/tex]:
[tex]\[ \left( -\frac{\ln(2)}{2} - \frac{1}{2} \right) - \left( 0 - 1 \right) \][/tex]
[tex]\[ -\frac{\ln(2)}{2} - \frac{1}{2} + 1 \][/tex]
Combine the terms:
[tex]\[ 1 - \left( \frac{1 + \ln(2)}{2} \right) \][/tex]
Which simplifies to:
[tex]\[ 1 - \frac{1}{2} - \frac{\ln(2)}{2} = \frac{1}{2} - \frac{\ln(2)}{2} \][/tex]

Therefore, the value of the definite integral [tex]\(\int_1^2 \frac{\ln(x)}{x^2} \, dx\)[/tex] is [tex]\(\frac{1}{2} - \frac{\ln(2)}{2}\)[/tex].