IDNLearn.com connects you with experts who provide accurate and reliable answers. Join our interactive community and get comprehensive, reliable answers to all your questions.
Sagot :
Sure, let's solve the inequality [tex]\( 1 + \log_2 x - 2 \log_x 2 > 0 \)[/tex] step-by-step.
### Step 1: Convert the logarithms to a common base
Start by expressing both logarithms in terms of natural logarithms. Recall that [tex]\( \log_b a = \frac{\ln a}{\ln b} \)[/tex].
So:
- [tex]\( \log_2 x = \frac{\ln x}{\ln 2} \)[/tex]
- [tex]\( \log_x 2 = \frac{\ln 2}{\ln x} \)[/tex]
### Step 2: Substitute these expressions into the inequality
Substituting into the original inequality, we get:
[tex]\[ 1 + \frac{\ln x}{\ln 2} - 2 \cdot \frac{\ln 2}{\ln x} > 0 \][/tex]
### Step 3: Simplify the inequality
Combine the terms to get a single inequality involving logarithms:
[tex]\[ 1 + \frac{\ln x}{\ln 2} - \frac{2 \ln 2}{\ln x} > 0 \][/tex]
### Step 4: Find a common denominator
To combine the terms more effectively, let's find a common denominator for the logarithms:
[tex]\[ \frac{\ln x \cdot \ln x + \ln 2 \cdot \ln x - 2 \ln 2^2}{\ln 2 \cdot \ln x} > 0 \][/tex]
Simplify the numerator:
[tex]\[ \frac{(\ln x)^2 + \ln 2 \cdot \ln x - 2 (\ln 2)^2}{\ln 2 \cdot \ln x} > 0 \][/tex]
### Step 5: Solve the simplified inequality
Now we set the numerator greater than 0 and solve:
[tex]\[ (\ln x)^2 + \ln 2 \cdot \ln x - 2 (\ln 2)^2 > 0 \][/tex]
This is a quadratic inequality in terms of [tex]\(\ln x\)[/tex]. Let [tex]\( t = \ln x \)[/tex], thus the inequality becomes:
[tex]\[ t^2 + \ln(2)t - 2(\ln(2))^2 > 0 \][/tex]
### Step 6: Solve the quadratic inequality
Solve [tex]\( t^2 + (\ln 2)t - 2(\ln 2)^2 = 0 \)[/tex] using the quadratic formula: [tex]\( t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \)[/tex]:
Here, [tex]\( a = 1 \)[/tex], [tex]\( b = \ln(2) \)[/tex], and [tex]\( c = -2(\ln 2)^2 \)[/tex]:
[tex]\[ t = \frac{-\ln 2 \pm \sqrt{(\ln 2)^2 + 8(\ln 2)^2}}{2} \][/tex]
[tex]\[ t = \frac{-\ln 2 \pm \sqrt{9 (\ln 2)^2}}{2} \][/tex]
[tex]\[ t = \frac{-\ln 2 \pm 3 \ln 2}{2} \][/tex]
[tex]\[ t_1 = \frac{2 \ln 2}{2} = \ln 4 \][/tex]
[tex]\[ t_2 = \frac{-4 \ln 2}{2} = -2 \ln 2 \][/tex]
Since [tex]\( t = \ln x \)[/tex], we have:
[tex]\[ \ln x = \ln 4 \implies x = 4 \][/tex]
[tex]\[ \ln x = -2 \ln 2 \implies x = e^{-2 \ln 2} = \left(e^{\ln 2}\right)^{-2} = 2^{-2} = \frac{1}{4} \][/tex]
### Step 7: Investigate the intervals
Thus, the critical values are [tex]\( x = 4 \)[/tex] and [tex]\( x = \frac{1}{4} \)[/tex]. We need to test the intervals these points create:
1. [tex]\( 0 < x < \frac{1}{4} \)[/tex]
2. [tex]\( \frac{1}{4} < x < 1 \)[/tex]
3. [tex]\( 1 < x < 4 \)[/tex]
4. [tex]\( x > 4 \)[/tex]
On calculating the values in these intervals, especially considering that the solution must satisfy the inequality [tex]\( 1 + \log_2 x - 2 \log_x 2 > 0 \)[/tex], we find that the inequality holds for [tex]\( 2 < x \)[/tex] and [tex]\(\frac{1}{4} < x < 1 \)[/tex].
So, the solution to [tex]\( 1 + \log_2 x - 2 \log_x 2 > 0 \)[/tex] is:
[tex]\[ (2 < x) \cup \left(\frac{1}{4} < x < 1\right) \][/tex]
This means [tex]\( x \)[/tex] must be in the intervals:
[tex]\[ x \in \left(2, \infty\right) \cup \left(\frac{1}{4}, 1\right) \][/tex]
### Step 1: Convert the logarithms to a common base
Start by expressing both logarithms in terms of natural logarithms. Recall that [tex]\( \log_b a = \frac{\ln a}{\ln b} \)[/tex].
So:
- [tex]\( \log_2 x = \frac{\ln x}{\ln 2} \)[/tex]
- [tex]\( \log_x 2 = \frac{\ln 2}{\ln x} \)[/tex]
### Step 2: Substitute these expressions into the inequality
Substituting into the original inequality, we get:
[tex]\[ 1 + \frac{\ln x}{\ln 2} - 2 \cdot \frac{\ln 2}{\ln x} > 0 \][/tex]
### Step 3: Simplify the inequality
Combine the terms to get a single inequality involving logarithms:
[tex]\[ 1 + \frac{\ln x}{\ln 2} - \frac{2 \ln 2}{\ln x} > 0 \][/tex]
### Step 4: Find a common denominator
To combine the terms more effectively, let's find a common denominator for the logarithms:
[tex]\[ \frac{\ln x \cdot \ln x + \ln 2 \cdot \ln x - 2 \ln 2^2}{\ln 2 \cdot \ln x} > 0 \][/tex]
Simplify the numerator:
[tex]\[ \frac{(\ln x)^2 + \ln 2 \cdot \ln x - 2 (\ln 2)^2}{\ln 2 \cdot \ln x} > 0 \][/tex]
### Step 5: Solve the simplified inequality
Now we set the numerator greater than 0 and solve:
[tex]\[ (\ln x)^2 + \ln 2 \cdot \ln x - 2 (\ln 2)^2 > 0 \][/tex]
This is a quadratic inequality in terms of [tex]\(\ln x\)[/tex]. Let [tex]\( t = \ln x \)[/tex], thus the inequality becomes:
[tex]\[ t^2 + \ln(2)t - 2(\ln(2))^2 > 0 \][/tex]
### Step 6: Solve the quadratic inequality
Solve [tex]\( t^2 + (\ln 2)t - 2(\ln 2)^2 = 0 \)[/tex] using the quadratic formula: [tex]\( t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \)[/tex]:
Here, [tex]\( a = 1 \)[/tex], [tex]\( b = \ln(2) \)[/tex], and [tex]\( c = -2(\ln 2)^2 \)[/tex]:
[tex]\[ t = \frac{-\ln 2 \pm \sqrt{(\ln 2)^2 + 8(\ln 2)^2}}{2} \][/tex]
[tex]\[ t = \frac{-\ln 2 \pm \sqrt{9 (\ln 2)^2}}{2} \][/tex]
[tex]\[ t = \frac{-\ln 2 \pm 3 \ln 2}{2} \][/tex]
[tex]\[ t_1 = \frac{2 \ln 2}{2} = \ln 4 \][/tex]
[tex]\[ t_2 = \frac{-4 \ln 2}{2} = -2 \ln 2 \][/tex]
Since [tex]\( t = \ln x \)[/tex], we have:
[tex]\[ \ln x = \ln 4 \implies x = 4 \][/tex]
[tex]\[ \ln x = -2 \ln 2 \implies x = e^{-2 \ln 2} = \left(e^{\ln 2}\right)^{-2} = 2^{-2} = \frac{1}{4} \][/tex]
### Step 7: Investigate the intervals
Thus, the critical values are [tex]\( x = 4 \)[/tex] and [tex]\( x = \frac{1}{4} \)[/tex]. We need to test the intervals these points create:
1. [tex]\( 0 < x < \frac{1}{4} \)[/tex]
2. [tex]\( \frac{1}{4} < x < 1 \)[/tex]
3. [tex]\( 1 < x < 4 \)[/tex]
4. [tex]\( x > 4 \)[/tex]
On calculating the values in these intervals, especially considering that the solution must satisfy the inequality [tex]\( 1 + \log_2 x - 2 \log_x 2 > 0 \)[/tex], we find that the inequality holds for [tex]\( 2 < x \)[/tex] and [tex]\(\frac{1}{4} < x < 1 \)[/tex].
So, the solution to [tex]\( 1 + \log_2 x - 2 \log_x 2 > 0 \)[/tex] is:
[tex]\[ (2 < x) \cup \left(\frac{1}{4} < x < 1\right) \][/tex]
This means [tex]\( x \)[/tex] must be in the intervals:
[tex]\[ x \in \left(2, \infty\right) \cup \left(\frac{1}{4}, 1\right) \][/tex]
Thank you for being part of this discussion. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. Discover the answers you need at IDNLearn.com. Thank you for visiting, and we hope to see you again for more solutions.