Explore a diverse range of topics and get expert answers on IDNLearn.com. Our experts are available to provide accurate, comprehensive answers to help you make informed decisions about any topic or issue you encounter.
Sagot :
To determine the energy of a photon given its frequency, we can use Planck's equation:
[tex]\[ E = h \cdot f \][/tex]
where:
- [tex]\( E \)[/tex] is the energy of the photon,
- [tex]\( h \)[/tex] is Planck's constant ([tex]\(6.63 \times 10^{-34} \, \text{J} \cdot \text{s}\)[/tex]),
- [tex]\( f \)[/tex] is the frequency of the photon ([tex]\(3.6 \times 10^{15} \, \text{Hz}\)[/tex]).
Let’s calculate the energy step by step:
1. Identify the given values:
- Planck's constant, [tex]\( h = 6.63 \times 10^{-34} \, \text{J} \cdot \text{s} \)[/tex]
- Frequency, [tex]\( f = 3.6 \times 10^{15} \, \text{Hz} \)[/tex]
2. Substitute the values into Planck's equation:
[tex]\[ E = (6.63 \times 10^{-34} \, \text{J} \cdot \text{s}) \times (3.6 \times 10^{15} \, \text{Hz}) \][/tex]
3. Perform the multiplication:
- First, multiply the numerical values: [tex]\( 6.63 \times 3.6 = 23.868 \)[/tex]
- Next, add the exponents of 10: [tex]\( (-34) + (15) = -19 \)[/tex]
Therefore, the product is:
[tex]\[ E \approx 23.868 \times 10^{-19} \, \text{J} \][/tex]
4. Adjust the scientific notation:
[tex]\[ 23.868 \times 10^{-19} \, \text{J} \approx 2.3868 \times 10^{-18} \, \text{J} \][/tex]
Thus, the calculated energy of the photon is [tex]\( 2.3868 \times 10^{-18} \, \text{J} \)[/tex].
Comparing this value with the given options:
- [tex]\( 1.8 \times 10^{-49} \, \text{J} \)[/tex]
- [tex]\( 2.4 \times 10^{-10} \, \text{J} \)[/tex]
- [tex]\( 1.8 \times 10^{-18} \, \text{J} \)[/tex]
- [tex]\( 2.4 \times 10^{-18} \, \text{J} \)[/tex]
The value [tex]\( 2.4 \times 10^{-18} \, \text{J} \)[/tex] is very close to our calculated result ([tex]\( 2.3868 \times 10^{-18} \, \text{J} \)[/tex]) and is the closest match among the given choices.
Therefore, the correct choice is:
[tex]\[ \boxed{2.4 \times 10^{-18} \, \text{J}} \][/tex]
[tex]\[ E = h \cdot f \][/tex]
where:
- [tex]\( E \)[/tex] is the energy of the photon,
- [tex]\( h \)[/tex] is Planck's constant ([tex]\(6.63 \times 10^{-34} \, \text{J} \cdot \text{s}\)[/tex]),
- [tex]\( f \)[/tex] is the frequency of the photon ([tex]\(3.6 \times 10^{15} \, \text{Hz}\)[/tex]).
Let’s calculate the energy step by step:
1. Identify the given values:
- Planck's constant, [tex]\( h = 6.63 \times 10^{-34} \, \text{J} \cdot \text{s} \)[/tex]
- Frequency, [tex]\( f = 3.6 \times 10^{15} \, \text{Hz} \)[/tex]
2. Substitute the values into Planck's equation:
[tex]\[ E = (6.63 \times 10^{-34} \, \text{J} \cdot \text{s}) \times (3.6 \times 10^{15} \, \text{Hz}) \][/tex]
3. Perform the multiplication:
- First, multiply the numerical values: [tex]\( 6.63 \times 3.6 = 23.868 \)[/tex]
- Next, add the exponents of 10: [tex]\( (-34) + (15) = -19 \)[/tex]
Therefore, the product is:
[tex]\[ E \approx 23.868 \times 10^{-19} \, \text{J} \][/tex]
4. Adjust the scientific notation:
[tex]\[ 23.868 \times 10^{-19} \, \text{J} \approx 2.3868 \times 10^{-18} \, \text{J} \][/tex]
Thus, the calculated energy of the photon is [tex]\( 2.3868 \times 10^{-18} \, \text{J} \)[/tex].
Comparing this value with the given options:
- [tex]\( 1.8 \times 10^{-49} \, \text{J} \)[/tex]
- [tex]\( 2.4 \times 10^{-10} \, \text{J} \)[/tex]
- [tex]\( 1.8 \times 10^{-18} \, \text{J} \)[/tex]
- [tex]\( 2.4 \times 10^{-18} \, \text{J} \)[/tex]
The value [tex]\( 2.4 \times 10^{-18} \, \text{J} \)[/tex] is very close to our calculated result ([tex]\( 2.3868 \times 10^{-18} \, \text{J} \)[/tex]) and is the closest match among the given choices.
Therefore, the correct choice is:
[tex]\[ \boxed{2.4 \times 10^{-18} \, \text{J}} \][/tex]
We greatly appreciate every question and answer you provide. Keep engaging and finding the best solutions. This community is the perfect place to learn and grow together. For trustworthy answers, rely on IDNLearn.com. Thanks for visiting, and we look forward to assisting you again.