Connect with a community of experts and enthusiasts on IDNLearn.com. Get comprehensive answers to all your questions from our network of experienced experts.
Sagot :
To determine the energy of a photon given its frequency, we can use Planck's equation:
[tex]\[ E = h \cdot f \][/tex]
where:
- [tex]\( E \)[/tex] is the energy of the photon,
- [tex]\( h \)[/tex] is Planck's constant ([tex]\(6.63 \times 10^{-34} \, \text{J} \cdot \text{s}\)[/tex]),
- [tex]\( f \)[/tex] is the frequency of the photon ([tex]\(3.6 \times 10^{15} \, \text{Hz}\)[/tex]).
Let’s calculate the energy step by step:
1. Identify the given values:
- Planck's constant, [tex]\( h = 6.63 \times 10^{-34} \, \text{J} \cdot \text{s} \)[/tex]
- Frequency, [tex]\( f = 3.6 \times 10^{15} \, \text{Hz} \)[/tex]
2. Substitute the values into Planck's equation:
[tex]\[ E = (6.63 \times 10^{-34} \, \text{J} \cdot \text{s}) \times (3.6 \times 10^{15} \, \text{Hz}) \][/tex]
3. Perform the multiplication:
- First, multiply the numerical values: [tex]\( 6.63 \times 3.6 = 23.868 \)[/tex]
- Next, add the exponents of 10: [tex]\( (-34) + (15) = -19 \)[/tex]
Therefore, the product is:
[tex]\[ E \approx 23.868 \times 10^{-19} \, \text{J} \][/tex]
4. Adjust the scientific notation:
[tex]\[ 23.868 \times 10^{-19} \, \text{J} \approx 2.3868 \times 10^{-18} \, \text{J} \][/tex]
Thus, the calculated energy of the photon is [tex]\( 2.3868 \times 10^{-18} \, \text{J} \)[/tex].
Comparing this value with the given options:
- [tex]\( 1.8 \times 10^{-49} \, \text{J} \)[/tex]
- [tex]\( 2.4 \times 10^{-10} \, \text{J} \)[/tex]
- [tex]\( 1.8 \times 10^{-18} \, \text{J} \)[/tex]
- [tex]\( 2.4 \times 10^{-18} \, \text{J} \)[/tex]
The value [tex]\( 2.4 \times 10^{-18} \, \text{J} \)[/tex] is very close to our calculated result ([tex]\( 2.3868 \times 10^{-18} \, \text{J} \)[/tex]) and is the closest match among the given choices.
Therefore, the correct choice is:
[tex]\[ \boxed{2.4 \times 10^{-18} \, \text{J}} \][/tex]
[tex]\[ E = h \cdot f \][/tex]
where:
- [tex]\( E \)[/tex] is the energy of the photon,
- [tex]\( h \)[/tex] is Planck's constant ([tex]\(6.63 \times 10^{-34} \, \text{J} \cdot \text{s}\)[/tex]),
- [tex]\( f \)[/tex] is the frequency of the photon ([tex]\(3.6 \times 10^{15} \, \text{Hz}\)[/tex]).
Let’s calculate the energy step by step:
1. Identify the given values:
- Planck's constant, [tex]\( h = 6.63 \times 10^{-34} \, \text{J} \cdot \text{s} \)[/tex]
- Frequency, [tex]\( f = 3.6 \times 10^{15} \, \text{Hz} \)[/tex]
2. Substitute the values into Planck's equation:
[tex]\[ E = (6.63 \times 10^{-34} \, \text{J} \cdot \text{s}) \times (3.6 \times 10^{15} \, \text{Hz}) \][/tex]
3. Perform the multiplication:
- First, multiply the numerical values: [tex]\( 6.63 \times 3.6 = 23.868 \)[/tex]
- Next, add the exponents of 10: [tex]\( (-34) + (15) = -19 \)[/tex]
Therefore, the product is:
[tex]\[ E \approx 23.868 \times 10^{-19} \, \text{J} \][/tex]
4. Adjust the scientific notation:
[tex]\[ 23.868 \times 10^{-19} \, \text{J} \approx 2.3868 \times 10^{-18} \, \text{J} \][/tex]
Thus, the calculated energy of the photon is [tex]\( 2.3868 \times 10^{-18} \, \text{J} \)[/tex].
Comparing this value with the given options:
- [tex]\( 1.8 \times 10^{-49} \, \text{J} \)[/tex]
- [tex]\( 2.4 \times 10^{-10} \, \text{J} \)[/tex]
- [tex]\( 1.8 \times 10^{-18} \, \text{J} \)[/tex]
- [tex]\( 2.4 \times 10^{-18} \, \text{J} \)[/tex]
The value [tex]\( 2.4 \times 10^{-18} \, \text{J} \)[/tex] is very close to our calculated result ([tex]\( 2.3868 \times 10^{-18} \, \text{J} \)[/tex]) and is the closest match among the given choices.
Therefore, the correct choice is:
[tex]\[ \boxed{2.4 \times 10^{-18} \, \text{J}} \][/tex]
We appreciate your presence here. Keep sharing knowledge and helping others find the answers they need. This community is the perfect place to learn together. Your questions find clarity at IDNLearn.com. Thanks for stopping by, and come back for more dependable solutions.