Explore a diverse range of topics and get expert answers on IDNLearn.com. Our experts are available to provide accurate, comprehensive answers to help you make informed decisions about any topic or issue you encounter.

What is the energy of a photon with a frequency of [tex][tex]$3.6 \times 10^{15}$[/tex] Hz[/tex]? Planck's constant is [tex]$6.63 \times 10^{-34} J \cdot s$[/tex].

A. [tex]$1.8 \times 10^{-49} J$[/tex]

B. [tex][tex]$2.4 \times 10^{-10} J$[/tex][/tex]

C. [tex]$1.8 \times 10^{-18} J$[/tex]

D. [tex]$2.4 \times 10^{-18} J$[/tex]


Sagot :

To determine the energy of a photon given its frequency, we can use Planck's equation:

[tex]\[ E = h \cdot f \][/tex]

where:
- [tex]\( E \)[/tex] is the energy of the photon,
- [tex]\( h \)[/tex] is Planck's constant ([tex]\(6.63 \times 10^{-34} \, \text{J} \cdot \text{s}\)[/tex]),
- [tex]\( f \)[/tex] is the frequency of the photon ([tex]\(3.6 \times 10^{15} \, \text{Hz}\)[/tex]).

Let’s calculate the energy step by step:

1. Identify the given values:

- Planck's constant, [tex]\( h = 6.63 \times 10^{-34} \, \text{J} \cdot \text{s} \)[/tex]
- Frequency, [tex]\( f = 3.6 \times 10^{15} \, \text{Hz} \)[/tex]

2. Substitute the values into Planck's equation:

[tex]\[ E = (6.63 \times 10^{-34} \, \text{J} \cdot \text{s}) \times (3.6 \times 10^{15} \, \text{Hz}) \][/tex]

3. Perform the multiplication:

- First, multiply the numerical values: [tex]\( 6.63 \times 3.6 = 23.868 \)[/tex]
- Next, add the exponents of 10: [tex]\( (-34) + (15) = -19 \)[/tex]

Therefore, the product is:

[tex]\[ E \approx 23.868 \times 10^{-19} \, \text{J} \][/tex]

4. Adjust the scientific notation:

[tex]\[ 23.868 \times 10^{-19} \, \text{J} \approx 2.3868 \times 10^{-18} \, \text{J} \][/tex]

Thus, the calculated energy of the photon is [tex]\( 2.3868 \times 10^{-18} \, \text{J} \)[/tex].

Comparing this value with the given options:
- [tex]\( 1.8 \times 10^{-49} \, \text{J} \)[/tex]
- [tex]\( 2.4 \times 10^{-10} \, \text{J} \)[/tex]
- [tex]\( 1.8 \times 10^{-18} \, \text{J} \)[/tex]
- [tex]\( 2.4 \times 10^{-18} \, \text{J} \)[/tex]

The value [tex]\( 2.4 \times 10^{-18} \, \text{J} \)[/tex] is very close to our calculated result ([tex]\( 2.3868 \times 10^{-18} \, \text{J} \)[/tex]) and is the closest match among the given choices.

Therefore, the correct choice is:
[tex]\[ \boxed{2.4 \times 10^{-18} \, \text{J}} \][/tex]