Get comprehensive answers to your questions with the help of IDNLearn.com's community. Join our interactive Q&A community and get reliable, detailed answers from experienced professionals across a variety of topics.
Sagot :
To determine the energy of a photon, we use the formula from quantum mechanics which relates the energy [tex]\( E \)[/tex] of a photon to its frequency [tex]\( f \)[/tex]:
[tex]\[ E = hf \][/tex]
Here:
- [tex]\( h \)[/tex] is Planck's constant, valued at [tex]\( 6.63 \times 10^{-34} \, \text{J} \cdot \text{s} \)[/tex].
- [tex]\( f \)[/tex] is the frequency of the photon, given as [tex]\( 3.6 \times 10^{15} \, \text{Hz} \)[/tex].
Let's perform the calculation step-by-step:
1. Substitute the values into the equation:
[tex]\[ E = (6.63 \times 10^{-34} \, \text{J} \cdot \text{s}) \times (3.6 \times 10^{15} \, \text{Hz}) \][/tex]
2. Write out the multiplication:
[tex]\[ E = 6.63 \times 3.6 \times 10^{-34} \times 10^{15} \, \text{J} \][/tex]
3. Multiply the constants:
[tex]\[ 6.63 \times 3.6 = 23.868 \][/tex]
4. Combine the exponents of 10:
[tex]\[ 10^{-34} \times 10^{15} = 10^{-19} \][/tex]
5. Combine the results:
[tex]\[ E = 23.868 \times 10^{-19} \, \text{J} \][/tex]
6. Convert the answer into scientific notation (keeping two significant figures, as the given choices are in this format):
[tex]\[ 23.868 \times 10^{-19} = 2.3868 \times 10^{-18} \, \text{J} \][/tex]
After reviewing the significant figures and matching it to the closest option given in the possible answers, we find the correct option:
[tex]\[ 2.4 \times 10^{-18} \, \text{J} \][/tex]
Thus, the energy of a photon with a frequency of [tex]\( 3.6 \times 10^{15} \, \text{Hz} \)[/tex] is:
[tex]\[ \boxed{2.4 \times 10^{-18} \, \text{J}} \][/tex]
[tex]\[ E = hf \][/tex]
Here:
- [tex]\( h \)[/tex] is Planck's constant, valued at [tex]\( 6.63 \times 10^{-34} \, \text{J} \cdot \text{s} \)[/tex].
- [tex]\( f \)[/tex] is the frequency of the photon, given as [tex]\( 3.6 \times 10^{15} \, \text{Hz} \)[/tex].
Let's perform the calculation step-by-step:
1. Substitute the values into the equation:
[tex]\[ E = (6.63 \times 10^{-34} \, \text{J} \cdot \text{s}) \times (3.6 \times 10^{15} \, \text{Hz}) \][/tex]
2. Write out the multiplication:
[tex]\[ E = 6.63 \times 3.6 \times 10^{-34} \times 10^{15} \, \text{J} \][/tex]
3. Multiply the constants:
[tex]\[ 6.63 \times 3.6 = 23.868 \][/tex]
4. Combine the exponents of 10:
[tex]\[ 10^{-34} \times 10^{15} = 10^{-19} \][/tex]
5. Combine the results:
[tex]\[ E = 23.868 \times 10^{-19} \, \text{J} \][/tex]
6. Convert the answer into scientific notation (keeping two significant figures, as the given choices are in this format):
[tex]\[ 23.868 \times 10^{-19} = 2.3868 \times 10^{-18} \, \text{J} \][/tex]
After reviewing the significant figures and matching it to the closest option given in the possible answers, we find the correct option:
[tex]\[ 2.4 \times 10^{-18} \, \text{J} \][/tex]
Thus, the energy of a photon with a frequency of [tex]\( 3.6 \times 10^{15} \, \text{Hz} \)[/tex] is:
[tex]\[ \boxed{2.4 \times 10^{-18} \, \text{J}} \][/tex]
We appreciate every question and answer you provide. Keep engaging and finding the best solutions. This community is the perfect place to learn and grow together. Your search for solutions ends at IDNLearn.com. Thank you for visiting, and we look forward to helping you again.