Discover new information and get your questions answered with IDNLearn.com. Our Q&A platform is designed to provide quick and accurate answers to any questions you may have.
Sagot :
Certainly! Let's evaluate the limit:
[tex]\[ \lim_{x \rightarrow 1} \frac{x - \sqrt{2 - x^2}}{2x - \sqrt{2 + 2x^2}} \][/tex]
### Step-by-Step Solution:
1. Substitute [tex]\( x = 1 \)[/tex]:
First, we will substitute [tex]\( x = 1 \)[/tex] directly into the expression to see if it results in an indeterminate form.
[tex]\[ \frac{1 - \sqrt{2 - 1^2}}{2 \cdot 1 - \sqrt{2 + 2 \cdot 1^2}} = \frac{1 - \sqrt{1}}{2 - \sqrt{4}} = \frac{1 - 1}{2 - 2} = \frac{0}{0} \][/tex]
Since the direct substitution produces [tex]\( \frac{0}{0} \)[/tex], this is an indeterminate form, and we need to use algebraic manipulation, such as rationalization or L'Hôpital's Rule, to evaluate the limit.
2. Rationalize the Numerator and Denominator:
To handle the square roots, let's try rationalizing the numerator and the denominator.
The numerator is:
[tex]\[ x - \sqrt{2 - x^2} \][/tex]
To rationalize the numerator, multiply by the conjugate:
[tex]\[ \frac{x - \sqrt{2 - x^2}}{\sqrt{2 - x^2} + x} \][/tex]
So the numerator becomes:
[tex]\[ \left( x - \sqrt{2 - x^2} \right) \cdot \left( \sqrt{2 - x^2} + x \right) = x \cdot \sqrt{2 - x^2} + x^2 - (2 - x^2) = x \sqrt{2 - x^2} + x^2 - 2 + x^2 = x \sqrt{2 - x^2} + 2x^2 - 2 \][/tex]
The denominator is:
[tex]\[ 2x - \sqrt{2 + 2x^2} \][/tex]
To rationalize the denominator, multiply by the conjugate:
[tex]\[ \frac{2x - \sqrt{2 + 2x^2}}{2x + \sqrt{2 + 2x^2}} \][/tex]
So the denominator becomes:
[tex]\[ \left( 2x - \sqrt{2 + 2x^2} \right) \cdot \left( 2x + \sqrt{2 + 2x^2} \right) = 4x^2 - (2 + 2x^2) = 4x^2 - 2 - 2x^2 = 2x^2 - 2 \][/tex]
3. Combine the Results:
Now, instead of directly doing the rationalization (for ease):
After simplification and considering rationalization indeed sets up to easier limits calculable via L'Hopital Rule or evaluations:
4. Applying L'Hopital's Rule:
Since [tex]\( \frac{0}{0} \)[/tex] is an indeterminate form, apply L'Hopital's Rule by taking derivatives of the numerator and the denominator:
Let [tex]\( f(x) = x - \sqrt{2 - x^2} \)[/tex] and [tex]\( g(x) = 2x - \sqrt{2 + 2x^2} \)[/tex].
Compute [tex]\( f'(x) \)[/tex]:
[tex]\[ f'(x) = 1 - \frac{d}{dx} (\sqrt{2 - x^2}) = 1 - \frac{1}{2\sqrt{2 - x^2}} \cdot (-2x) = 1 + \frac{x}{\sqrt{2 - x^2}} \][/tex]
Compute [tex]\( g'(x) \)[/tex]:
[tex]\[ g'(x) = 2 - \frac{d}{dx} (\sqrt{2 + 2x^2}) = 2 - \frac{1}{2\sqrt{2 + 2x^2}} \cdot (4x) = 2 - \frac{2x}{\sqrt{2 + 2x^2}} \][/tex]
Apply L'Hopital's Rule:
[tex]\[ \lim_{x \to 1} \frac{f'(x)}{g'(x)} = \lim_{x \to 1} \frac{1 + \frac{x}{\sqrt{2 - x^2}}}{2 - \frac{2x}{\sqrt{2 + 2x^2}}} \][/tex]
Substitute [tex]\( x = 1 \)[/tex]:
[tex]\[ \frac{1 + \frac{1}{\sqrt{1}}}{2 - \frac{2 \cdot 1}{\sqrt{4}}} = \frac{1 + 1}{2 - 1} = \frac{2}{1} = 2 \][/tex]
### The final answer is:
[tex]\[ \boxed{2} \][/tex]
[tex]\[ \lim_{x \rightarrow 1} \frac{x - \sqrt{2 - x^2}}{2x - \sqrt{2 + 2x^2}} \][/tex]
### Step-by-Step Solution:
1. Substitute [tex]\( x = 1 \)[/tex]:
First, we will substitute [tex]\( x = 1 \)[/tex] directly into the expression to see if it results in an indeterminate form.
[tex]\[ \frac{1 - \sqrt{2 - 1^2}}{2 \cdot 1 - \sqrt{2 + 2 \cdot 1^2}} = \frac{1 - \sqrt{1}}{2 - \sqrt{4}} = \frac{1 - 1}{2 - 2} = \frac{0}{0} \][/tex]
Since the direct substitution produces [tex]\( \frac{0}{0} \)[/tex], this is an indeterminate form, and we need to use algebraic manipulation, such as rationalization or L'Hôpital's Rule, to evaluate the limit.
2. Rationalize the Numerator and Denominator:
To handle the square roots, let's try rationalizing the numerator and the denominator.
The numerator is:
[tex]\[ x - \sqrt{2 - x^2} \][/tex]
To rationalize the numerator, multiply by the conjugate:
[tex]\[ \frac{x - \sqrt{2 - x^2}}{\sqrt{2 - x^2} + x} \][/tex]
So the numerator becomes:
[tex]\[ \left( x - \sqrt{2 - x^2} \right) \cdot \left( \sqrt{2 - x^2} + x \right) = x \cdot \sqrt{2 - x^2} + x^2 - (2 - x^2) = x \sqrt{2 - x^2} + x^2 - 2 + x^2 = x \sqrt{2 - x^2} + 2x^2 - 2 \][/tex]
The denominator is:
[tex]\[ 2x - \sqrt{2 + 2x^2} \][/tex]
To rationalize the denominator, multiply by the conjugate:
[tex]\[ \frac{2x - \sqrt{2 + 2x^2}}{2x + \sqrt{2 + 2x^2}} \][/tex]
So the denominator becomes:
[tex]\[ \left( 2x - \sqrt{2 + 2x^2} \right) \cdot \left( 2x + \sqrt{2 + 2x^2} \right) = 4x^2 - (2 + 2x^2) = 4x^2 - 2 - 2x^2 = 2x^2 - 2 \][/tex]
3. Combine the Results:
Now, instead of directly doing the rationalization (for ease):
After simplification and considering rationalization indeed sets up to easier limits calculable via L'Hopital Rule or evaluations:
4. Applying L'Hopital's Rule:
Since [tex]\( \frac{0}{0} \)[/tex] is an indeterminate form, apply L'Hopital's Rule by taking derivatives of the numerator and the denominator:
Let [tex]\( f(x) = x - \sqrt{2 - x^2} \)[/tex] and [tex]\( g(x) = 2x - \sqrt{2 + 2x^2} \)[/tex].
Compute [tex]\( f'(x) \)[/tex]:
[tex]\[ f'(x) = 1 - \frac{d}{dx} (\sqrt{2 - x^2}) = 1 - \frac{1}{2\sqrt{2 - x^2}} \cdot (-2x) = 1 + \frac{x}{\sqrt{2 - x^2}} \][/tex]
Compute [tex]\( g'(x) \)[/tex]:
[tex]\[ g'(x) = 2 - \frac{d}{dx} (\sqrt{2 + 2x^2}) = 2 - \frac{1}{2\sqrt{2 + 2x^2}} \cdot (4x) = 2 - \frac{2x}{\sqrt{2 + 2x^2}} \][/tex]
Apply L'Hopital's Rule:
[tex]\[ \lim_{x \to 1} \frac{f'(x)}{g'(x)} = \lim_{x \to 1} \frac{1 + \frac{x}{\sqrt{2 - x^2}}}{2 - \frac{2x}{\sqrt{2 + 2x^2}}} \][/tex]
Substitute [tex]\( x = 1 \)[/tex]:
[tex]\[ \frac{1 + \frac{1}{\sqrt{1}}}{2 - \frac{2 \cdot 1}{\sqrt{4}}} = \frac{1 + 1}{2 - 1} = \frac{2}{1} = 2 \][/tex]
### The final answer is:
[tex]\[ \boxed{2} \][/tex]
Thank you for contributing to our discussion. Don't forget to check back for new answers. Keep asking, answering, and sharing useful information. Thank you for visiting IDNLearn.com. We’re here to provide accurate and reliable answers, so visit us again soon.