Discover new information and get your questions answered with IDNLearn.com. Discover prompt and accurate responses from our experts, ensuring you get the information you need quickly.
Sagot :
Certainly! Let's evaluate the limit:
[tex]\[ \lim_{x \rightarrow 1} \frac{x - \sqrt{2 - x^2}}{2x - \sqrt{2 + 2x^2}} \][/tex]
### Step-by-Step Solution:
1. Substitute [tex]\( x = 1 \)[/tex]:
First, we will substitute [tex]\( x = 1 \)[/tex] directly into the expression to see if it results in an indeterminate form.
[tex]\[ \frac{1 - \sqrt{2 - 1^2}}{2 \cdot 1 - \sqrt{2 + 2 \cdot 1^2}} = \frac{1 - \sqrt{1}}{2 - \sqrt{4}} = \frac{1 - 1}{2 - 2} = \frac{0}{0} \][/tex]
Since the direct substitution produces [tex]\( \frac{0}{0} \)[/tex], this is an indeterminate form, and we need to use algebraic manipulation, such as rationalization or L'Hôpital's Rule, to evaluate the limit.
2. Rationalize the Numerator and Denominator:
To handle the square roots, let's try rationalizing the numerator and the denominator.
The numerator is:
[tex]\[ x - \sqrt{2 - x^2} \][/tex]
To rationalize the numerator, multiply by the conjugate:
[tex]\[ \frac{x - \sqrt{2 - x^2}}{\sqrt{2 - x^2} + x} \][/tex]
So the numerator becomes:
[tex]\[ \left( x - \sqrt{2 - x^2} \right) \cdot \left( \sqrt{2 - x^2} + x \right) = x \cdot \sqrt{2 - x^2} + x^2 - (2 - x^2) = x \sqrt{2 - x^2} + x^2 - 2 + x^2 = x \sqrt{2 - x^2} + 2x^2 - 2 \][/tex]
The denominator is:
[tex]\[ 2x - \sqrt{2 + 2x^2} \][/tex]
To rationalize the denominator, multiply by the conjugate:
[tex]\[ \frac{2x - \sqrt{2 + 2x^2}}{2x + \sqrt{2 + 2x^2}} \][/tex]
So the denominator becomes:
[tex]\[ \left( 2x - \sqrt{2 + 2x^2} \right) \cdot \left( 2x + \sqrt{2 + 2x^2} \right) = 4x^2 - (2 + 2x^2) = 4x^2 - 2 - 2x^2 = 2x^2 - 2 \][/tex]
3. Combine the Results:
Now, instead of directly doing the rationalization (for ease):
After simplification and considering rationalization indeed sets up to easier limits calculable via L'Hopital Rule or evaluations:
4. Applying L'Hopital's Rule:
Since [tex]\( \frac{0}{0} \)[/tex] is an indeterminate form, apply L'Hopital's Rule by taking derivatives of the numerator and the denominator:
Let [tex]\( f(x) = x - \sqrt{2 - x^2} \)[/tex] and [tex]\( g(x) = 2x - \sqrt{2 + 2x^2} \)[/tex].
Compute [tex]\( f'(x) \)[/tex]:
[tex]\[ f'(x) = 1 - \frac{d}{dx} (\sqrt{2 - x^2}) = 1 - \frac{1}{2\sqrt{2 - x^2}} \cdot (-2x) = 1 + \frac{x}{\sqrt{2 - x^2}} \][/tex]
Compute [tex]\( g'(x) \)[/tex]:
[tex]\[ g'(x) = 2 - \frac{d}{dx} (\sqrt{2 + 2x^2}) = 2 - \frac{1}{2\sqrt{2 + 2x^2}} \cdot (4x) = 2 - \frac{2x}{\sqrt{2 + 2x^2}} \][/tex]
Apply L'Hopital's Rule:
[tex]\[ \lim_{x \to 1} \frac{f'(x)}{g'(x)} = \lim_{x \to 1} \frac{1 + \frac{x}{\sqrt{2 - x^2}}}{2 - \frac{2x}{\sqrt{2 + 2x^2}}} \][/tex]
Substitute [tex]\( x = 1 \)[/tex]:
[tex]\[ \frac{1 + \frac{1}{\sqrt{1}}}{2 - \frac{2 \cdot 1}{\sqrt{4}}} = \frac{1 + 1}{2 - 1} = \frac{2}{1} = 2 \][/tex]
### The final answer is:
[tex]\[ \boxed{2} \][/tex]
[tex]\[ \lim_{x \rightarrow 1} \frac{x - \sqrt{2 - x^2}}{2x - \sqrt{2 + 2x^2}} \][/tex]
### Step-by-Step Solution:
1. Substitute [tex]\( x = 1 \)[/tex]:
First, we will substitute [tex]\( x = 1 \)[/tex] directly into the expression to see if it results in an indeterminate form.
[tex]\[ \frac{1 - \sqrt{2 - 1^2}}{2 \cdot 1 - \sqrt{2 + 2 \cdot 1^2}} = \frac{1 - \sqrt{1}}{2 - \sqrt{4}} = \frac{1 - 1}{2 - 2} = \frac{0}{0} \][/tex]
Since the direct substitution produces [tex]\( \frac{0}{0} \)[/tex], this is an indeterminate form, and we need to use algebraic manipulation, such as rationalization or L'Hôpital's Rule, to evaluate the limit.
2. Rationalize the Numerator and Denominator:
To handle the square roots, let's try rationalizing the numerator and the denominator.
The numerator is:
[tex]\[ x - \sqrt{2 - x^2} \][/tex]
To rationalize the numerator, multiply by the conjugate:
[tex]\[ \frac{x - \sqrt{2 - x^2}}{\sqrt{2 - x^2} + x} \][/tex]
So the numerator becomes:
[tex]\[ \left( x - \sqrt{2 - x^2} \right) \cdot \left( \sqrt{2 - x^2} + x \right) = x \cdot \sqrt{2 - x^2} + x^2 - (2 - x^2) = x \sqrt{2 - x^2} + x^2 - 2 + x^2 = x \sqrt{2 - x^2} + 2x^2 - 2 \][/tex]
The denominator is:
[tex]\[ 2x - \sqrt{2 + 2x^2} \][/tex]
To rationalize the denominator, multiply by the conjugate:
[tex]\[ \frac{2x - \sqrt{2 + 2x^2}}{2x + \sqrt{2 + 2x^2}} \][/tex]
So the denominator becomes:
[tex]\[ \left( 2x - \sqrt{2 + 2x^2} \right) \cdot \left( 2x + \sqrt{2 + 2x^2} \right) = 4x^2 - (2 + 2x^2) = 4x^2 - 2 - 2x^2 = 2x^2 - 2 \][/tex]
3. Combine the Results:
Now, instead of directly doing the rationalization (for ease):
After simplification and considering rationalization indeed sets up to easier limits calculable via L'Hopital Rule or evaluations:
4. Applying L'Hopital's Rule:
Since [tex]\( \frac{0}{0} \)[/tex] is an indeterminate form, apply L'Hopital's Rule by taking derivatives of the numerator and the denominator:
Let [tex]\( f(x) = x - \sqrt{2 - x^2} \)[/tex] and [tex]\( g(x) = 2x - \sqrt{2 + 2x^2} \)[/tex].
Compute [tex]\( f'(x) \)[/tex]:
[tex]\[ f'(x) = 1 - \frac{d}{dx} (\sqrt{2 - x^2}) = 1 - \frac{1}{2\sqrt{2 - x^2}} \cdot (-2x) = 1 + \frac{x}{\sqrt{2 - x^2}} \][/tex]
Compute [tex]\( g'(x) \)[/tex]:
[tex]\[ g'(x) = 2 - \frac{d}{dx} (\sqrt{2 + 2x^2}) = 2 - \frac{1}{2\sqrt{2 + 2x^2}} \cdot (4x) = 2 - \frac{2x}{\sqrt{2 + 2x^2}} \][/tex]
Apply L'Hopital's Rule:
[tex]\[ \lim_{x \to 1} \frac{f'(x)}{g'(x)} = \lim_{x \to 1} \frac{1 + \frac{x}{\sqrt{2 - x^2}}}{2 - \frac{2x}{\sqrt{2 + 2x^2}}} \][/tex]
Substitute [tex]\( x = 1 \)[/tex]:
[tex]\[ \frac{1 + \frac{1}{\sqrt{1}}}{2 - \frac{2 \cdot 1}{\sqrt{4}}} = \frac{1 + 1}{2 - 1} = \frac{2}{1} = 2 \][/tex]
### The final answer is:
[tex]\[ \boxed{2} \][/tex]
Thank you for contributing to our discussion. Don't forget to check back for new answers. Keep asking, answering, and sharing useful information. Discover the answers you need at IDNLearn.com. Thank you for visiting, and we hope to see you again for more solutions.