Find accurate and reliable answers to your questions on IDNLearn.com. Ask your questions and receive comprehensive and trustworthy answers from our experienced community of professionals.
Sagot :
To determine the gravitational force between Earth and Venus, we need to use Newton's Law of Universal Gravitation, which is defined by the equation:
[tex]\[ F = \frac{G \cdot m_1 \cdot m_2}{r^2} \][/tex]
where:
- [tex]\( F \)[/tex] is the force of gravity,
- [tex]\( G \)[/tex] is the gravitational constant ([tex]\(6.673 \times 10^{-11} \)[/tex] N m[tex]\(^2\)[/tex] / kg[tex]\(^2\)[/tex]),
- [tex]\( m_1 \)[/tex] is the mass of the first object (Earth, [tex]\(6.0 \times 10^{24}\)[/tex] kg),
- [tex]\( m_2 \)[/tex] is the mass of the second object (Venus, [tex]\(4.88 \times 10^{24}\)[/tex] kg),
- [tex]\( r \)[/tex] is the distance between the centers of the two objects ([tex]\(3.8 \times 10^{10}\)[/tex] meters).
Plugging the values into the equation, we get:
[tex]\[ F = \frac{(6.673 \times 10^{-11}) \cdot (6.0 \times 10^{24}) \cdot (4.88 \times 10^{24})}{(3.8 \times 10^{10})^2} \][/tex]
Performing the calculations step-by-step:
1. Multiply the masses of Earth and Venus:
[tex]\[ 6.0 \times 10^{24} \times 4.88 \times 10^{24} = 2.928 \times 10^{49} \][/tex]
2. Multiply this result by the gravitational constant:
[tex]\[ 6.673 \times 10^{-11} \times 2.928 \times 10^{49} = 1.953624 \times 10^{39} \][/tex]
3. Square the distance between Earth and Venus:
[tex]\[ (3.8 \times 10^{10})^2 = 1.444 \times 10^{21} \][/tex]
4. Finally, divide the product from step 2 by the result from step 3:
[tex]\[ \frac{1.953624 \times 10^{39}}{1.444 \times 10^{21}} = 1.3530847645429363 \times 10^{18} \][/tex]
So, the gravitational force between Earth and Venus is:
[tex]\[ F = 1.353 \times 10^{18} \text{ newtons} \][/tex]
Therefore, the correct answer is:
C. [tex]\( 13.52 \times 10^{17} \)[/tex] newtons
[tex]\[ F = \frac{G \cdot m_1 \cdot m_2}{r^2} \][/tex]
where:
- [tex]\( F \)[/tex] is the force of gravity,
- [tex]\( G \)[/tex] is the gravitational constant ([tex]\(6.673 \times 10^{-11} \)[/tex] N m[tex]\(^2\)[/tex] / kg[tex]\(^2\)[/tex]),
- [tex]\( m_1 \)[/tex] is the mass of the first object (Earth, [tex]\(6.0 \times 10^{24}\)[/tex] kg),
- [tex]\( m_2 \)[/tex] is the mass of the second object (Venus, [tex]\(4.88 \times 10^{24}\)[/tex] kg),
- [tex]\( r \)[/tex] is the distance between the centers of the two objects ([tex]\(3.8 \times 10^{10}\)[/tex] meters).
Plugging the values into the equation, we get:
[tex]\[ F = \frac{(6.673 \times 10^{-11}) \cdot (6.0 \times 10^{24}) \cdot (4.88 \times 10^{24})}{(3.8 \times 10^{10})^2} \][/tex]
Performing the calculations step-by-step:
1. Multiply the masses of Earth and Venus:
[tex]\[ 6.0 \times 10^{24} \times 4.88 \times 10^{24} = 2.928 \times 10^{49} \][/tex]
2. Multiply this result by the gravitational constant:
[tex]\[ 6.673 \times 10^{-11} \times 2.928 \times 10^{49} = 1.953624 \times 10^{39} \][/tex]
3. Square the distance between Earth and Venus:
[tex]\[ (3.8 \times 10^{10})^2 = 1.444 \times 10^{21} \][/tex]
4. Finally, divide the product from step 2 by the result from step 3:
[tex]\[ \frac{1.953624 \times 10^{39}}{1.444 \times 10^{21}} = 1.3530847645429363 \times 10^{18} \][/tex]
So, the gravitational force between Earth and Venus is:
[tex]\[ F = 1.353 \times 10^{18} \text{ newtons} \][/tex]
Therefore, the correct answer is:
C. [tex]\( 13.52 \times 10^{17} \)[/tex] newtons
Thank you for joining our conversation. Don't hesitate to return anytime to find answers to your questions. Let's continue sharing knowledge and experiences! IDNLearn.com has the solutions to your questions. Thanks for stopping by, and see you next time for more reliable information.