Connect with experts and get insightful answers to your questions on IDNLearn.com. Discover reliable and timely information on any topic from our network of experienced professionals.
Sagot :
Certainly! Let's walk through this problem step-by-step to determine the forces [tex]\(\vec{F}_1\)[/tex] and [tex]\(\vec{F}_2\)[/tex], and then find the net force [tex]\(\vec{F}_{\text{net}}\)[/tex] on [tex]\(q_3\)[/tex].
### Step-by-Step Solution:
1. Given values and constants:
- Charge [tex]\(q_1 = 12 \, \text{C}\)[/tex]
- Charge [tex]\(q_2 = -10 \, \text{C}\)[/tex]
- Charge [tex]\(q_3 = 5 \, \text{C}\)[/tex]
- Coulomb's constant [tex]\(k = 8.99 \times 10^9 \, \text{N·m}^2/\text{C}^2\)[/tex]
- Distance between [tex]\(q_1\)[/tex] and [tex]\(q_3\)[/tex], [tex]\(d_{13} = 0.3 \, \text{m}\)[/tex]
- Distance between [tex]\(q_2\)[/tex] and [tex]\(q_3\)[/tex], [tex]\(d_{23} = 0.5 \, \text{m}\)[/tex]
2. Calculate the force [tex]\(\vec{F}_1\)[/tex]:
[tex]\[ \vec{F}_1 = \frac{k |q_1 q_3|}{d_{13}^2} \][/tex]
Plugging in the values:
[tex]\[ \vec{F}_1 = \frac{8.99 \times 10^9 \, \text{N·m}^2/\text{C}^2 \times |12 \, \text{C} \times 5 \, \text{C}|}{(0.3 \, \text{m})^2} \][/tex]
The calculated value for [tex]\(\vec{F}_1\)[/tex] is:
[tex]\[ \vec{F}_1 = 5993333333333.334 \, \text{N} \][/tex]
3. Calculate the force [tex]\(\vec{F}_2\)[/tex]:
[tex]\[ \vec{F}_2 = \frac{k |q_2 q_3|}{d_{23}^2} \][/tex]
Plugging in the values:
[tex]\[ \vec{F}_2 = \frac{8.99 \times 10^9 \, \text{N·m}^2/\text{C}^2 \times |-10 \, \text{C} \times 5 \, \text{C}|}{(0.5 \, \text{m})^2} \][/tex]
The calculated value for [tex]\(\vec{F}_2\)[/tex] is:
[tex]\[ \vec{F}_2 = 1798000000000.0 \, \text{N} \][/tex]
4. Determine the net force on [tex]\(q_3\)[/tex]:
- Since [tex]\(q_1\)[/tex] and [tex]\(q_3\)[/tex] have opposite signs, [tex]\(\vec{F}_1\)[/tex] is attractive, meaning [tex]\(q_3\)[/tex] is attracted towards [tex]\(q_1\)[/tex].
- Since [tex]\(q_2\)[/tex] and [tex]\(q_3\)[/tex] also have opposite signs, [tex]\(\vec{F}_2\)[/tex] is attractive, meaning [tex]\(q_3\)[/tex] is attracted towards [tex]\(q_2\)[/tex].
- Assume the direction towards [tex]\(q_1\)[/tex] is positive and towards [tex]\(q_2\)[/tex] is negative.
The net force on [tex]\(q_3\)[/tex] then is:
[tex]\[ \vec{F}_{\text{net}} = \vec{F}_1 - \vec{F}_2 \][/tex]
Plugging in the calculated values:
[tex]\[ \vec{F}_{\text{net}} = 5993333333333.334 \, \text{N} - 1798000000000.0 \, \text{N} \][/tex]
The calculated net force is:
[tex]\[ \vec{F}_{\text{net}} = 4195333333333.334 \, \text{N} \][/tex]
### Conclusion:
- The force exerted on [tex]\(q_3\)[/tex] by [tex]\(q_1\)[/tex] is [tex]\(\vec{F}_1 = 5993333333333.334 \, \text{N}\)[/tex].
- The force exerted on [tex]\(q_3\)[/tex] by [tex]\(q_2\)[/tex] is [tex]\(\vec{F}_2 = 1798000000000.0 \, \text{N}\)[/tex].
- The net force on [tex]\(q_3\)[/tex] is [tex]\(\vec{F}_{\text{net}} = 4195333333333.334 \, \text{N}\)[/tex].
These values represent the magnitudes and respective directions of the forces acting on [tex]\(q_3\)[/tex].
### Step-by-Step Solution:
1. Given values and constants:
- Charge [tex]\(q_1 = 12 \, \text{C}\)[/tex]
- Charge [tex]\(q_2 = -10 \, \text{C}\)[/tex]
- Charge [tex]\(q_3 = 5 \, \text{C}\)[/tex]
- Coulomb's constant [tex]\(k = 8.99 \times 10^9 \, \text{N·m}^2/\text{C}^2\)[/tex]
- Distance between [tex]\(q_1\)[/tex] and [tex]\(q_3\)[/tex], [tex]\(d_{13} = 0.3 \, \text{m}\)[/tex]
- Distance between [tex]\(q_2\)[/tex] and [tex]\(q_3\)[/tex], [tex]\(d_{23} = 0.5 \, \text{m}\)[/tex]
2. Calculate the force [tex]\(\vec{F}_1\)[/tex]:
[tex]\[ \vec{F}_1 = \frac{k |q_1 q_3|}{d_{13}^2} \][/tex]
Plugging in the values:
[tex]\[ \vec{F}_1 = \frac{8.99 \times 10^9 \, \text{N·m}^2/\text{C}^2 \times |12 \, \text{C} \times 5 \, \text{C}|}{(0.3 \, \text{m})^2} \][/tex]
The calculated value for [tex]\(\vec{F}_1\)[/tex] is:
[tex]\[ \vec{F}_1 = 5993333333333.334 \, \text{N} \][/tex]
3. Calculate the force [tex]\(\vec{F}_2\)[/tex]:
[tex]\[ \vec{F}_2 = \frac{k |q_2 q_3|}{d_{23}^2} \][/tex]
Plugging in the values:
[tex]\[ \vec{F}_2 = \frac{8.99 \times 10^9 \, \text{N·m}^2/\text{C}^2 \times |-10 \, \text{C} \times 5 \, \text{C}|}{(0.5 \, \text{m})^2} \][/tex]
The calculated value for [tex]\(\vec{F}_2\)[/tex] is:
[tex]\[ \vec{F}_2 = 1798000000000.0 \, \text{N} \][/tex]
4. Determine the net force on [tex]\(q_3\)[/tex]:
- Since [tex]\(q_1\)[/tex] and [tex]\(q_3\)[/tex] have opposite signs, [tex]\(\vec{F}_1\)[/tex] is attractive, meaning [tex]\(q_3\)[/tex] is attracted towards [tex]\(q_1\)[/tex].
- Since [tex]\(q_2\)[/tex] and [tex]\(q_3\)[/tex] also have opposite signs, [tex]\(\vec{F}_2\)[/tex] is attractive, meaning [tex]\(q_3\)[/tex] is attracted towards [tex]\(q_2\)[/tex].
- Assume the direction towards [tex]\(q_1\)[/tex] is positive and towards [tex]\(q_2\)[/tex] is negative.
The net force on [tex]\(q_3\)[/tex] then is:
[tex]\[ \vec{F}_{\text{net}} = \vec{F}_1 - \vec{F}_2 \][/tex]
Plugging in the calculated values:
[tex]\[ \vec{F}_{\text{net}} = 5993333333333.334 \, \text{N} - 1798000000000.0 \, \text{N} \][/tex]
The calculated net force is:
[tex]\[ \vec{F}_{\text{net}} = 4195333333333.334 \, \text{N} \][/tex]
### Conclusion:
- The force exerted on [tex]\(q_3\)[/tex] by [tex]\(q_1\)[/tex] is [tex]\(\vec{F}_1 = 5993333333333.334 \, \text{N}\)[/tex].
- The force exerted on [tex]\(q_3\)[/tex] by [tex]\(q_2\)[/tex] is [tex]\(\vec{F}_2 = 1798000000000.0 \, \text{N}\)[/tex].
- The net force on [tex]\(q_3\)[/tex] is [tex]\(\vec{F}_{\text{net}} = 4195333333333.334 \, \text{N}\)[/tex].
These values represent the magnitudes and respective directions of the forces acting on [tex]\(q_3\)[/tex].
Thank you for using this platform to share and learn. Don't hesitate to keep asking and answering. We value every contribution you make. For precise answers, trust IDNLearn.com. Thank you for visiting, and we look forward to helping you again soon.