IDNLearn.com: Your reliable source for finding expert answers. Discover the information you need quickly and easily with our reliable and thorough Q&A platform.
Sagot :
Let's solve the given problem step-by-step.
## Part (a)
### (i) Write down the value of [tex]\( q \)[/tex].
We know that for a quadratic equation [tex]\( x^2 - p x + q = 0 \)[/tex] with roots [tex]\( \alpha \)[/tex] and [tex]\( \beta \)[/tex]:
- [tex]\( \alpha + \beta = p \)[/tex]
- [tex]\( \alpha \beta = q \)[/tex]
Given [tex]\( 2 \alpha \beta = 3 \)[/tex], we can find [tex]\( \alpha \beta \)[/tex]:
[tex]\[ 2 \alpha \beta = 3 \implies \alpha \beta = \frac{3}{2} \][/tex]
Thus, the value of [tex]\( q \)[/tex] is:
[tex]\[ q = \frac{3}{2} \][/tex]
### (ii) Find an expression, in terms of [tex]\( k \)[/tex], for [tex]\( p \)[/tex].
We are also given the expression:
[tex]\[ 4 (\alpha^2 + \beta^2) = k^2 - 6k - 3 \][/tex]
We use the identity [tex]\( \alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha \beta \)[/tex]:
[tex]\[ 4 (\alpha^2 + \beta^2) = 4 \left( (\alpha + \beta)^2 - 2 \alpha \beta \right) \][/tex]
[tex]\[ 4 \left( (\alpha + \beta)^2 - 2 \alpha \beta \right) = k^2 - 6k - 3 \][/tex]
We already know that [tex]\( \alpha + \beta = p \)[/tex] and [tex]\( \alpha \beta = \frac{3}{2} \)[/tex]:
[tex]\[ 4 \left( p^2 - 2 \times \frac{3}{2} \right) = k^2 - 6k - 3 \][/tex]
[tex]\[ 4 \left( p^2 - 3 \right) = k^2 - 6k - 3 \][/tex]
[tex]\[ 4p^2 - 12 = k^2 - 6k - 3 \][/tex]
[tex]\[ 4p^2 = k^2 - 6k + 9 \][/tex]
[tex]\[ 4p^2 = (k - 3)^2 \][/tex]
Taking the square root of both sides, we get:
[tex]\[ 2p = k - 3 \][/tex]
Thus:
[tex]\[ p = \frac{k - 3}{2} \][/tex]
## Part (b)
Given also that [tex]\( 7 \alpha \beta = 3 (\alpha + \beta) \)[/tex]:
[tex]\[ 7 \times \frac{3}{2} = 3 (\alpha + \beta) \][/tex]
[tex]\[ \frac{21}{2} = 3p \][/tex]
[tex]\[ p = \frac{21}{6} \][/tex]
[tex]\[ p = \frac{7}{2} \][/tex]
From part (a), we already have [tex]\( p = \frac{k - 3}{2} \)[/tex]:
[tex]\[ \frac{k - 3}{2} = \frac{7}{2} \][/tex]
[tex]\[ k - 3 = 7 \][/tex]
[tex]\[ k = 10 \][/tex]
## Part (c)
To form an equation with integer coefficients that has roots [tex]\( \frac{\alpha}{\alpha + \beta} \)[/tex] and [tex]\( \frac{\beta}{\alpha + \beta} \)[/tex], we start by recognizing the roots of the new polynomial. Let [tex]\( \alpha + \beta = p \)[/tex]:
[tex]\[ p = \frac{10 - 3}{2} = \frac{7}{2} \][/tex]
Since [tex]\(\alpha\)[/tex] and [tex]\(\beta\)[/tex] are the roots of the original polynomial, the sum [tex]\(\frac{\alpha}{\alpha + \beta} + \frac{\beta}{\alpha + \beta} = 1\)[/tex].
Let the roots be [tex]\( \frac{\alpha}{\alpha + \beta} \)[/tex] and [tex]\( \frac{\beta}{\alpha + \beta} \)[/tex]:
[tex]\[ \frac{\alpha}{p} + \frac{\beta}{p} = 1 \][/tex]
The polynomial we seek is:
[tex]\[ y^2 - y + r = 0 \][/tex]
Given that the product of roots [tex]\( \frac{\alpha}{\alpha + \beta} \times \frac{\beta}{\alpha + \beta} \)[/tex] is equivalent to:
[tex]\[ \frac{\alpha \beta}{(\alpha + \beta)^2} \][/tex]
[tex]\[ \frac{\frac{3}{2}}{\left(\frac{7}{2}\right)^2} \][/tex]
[tex]\[ \frac{\frac{3}{2}}{\frac{49}{4}} \][/tex]
[tex]\[ \frac{3}{2} \times \frac{4}{49} \][/tex]
[tex]\[ \frac{12}{98} = \frac{6}{49} \][/tex]
Thus, [tex]\( r = \frac{6}{49} \)[/tex], but since we want integer coefficients, we can multiply through by 49 to clear the denominator:
[tex]\[ 49y^2 - 49y + 6 = 0 \][/tex]
Therefore, the polynomial equation with integer coefficients is:
[tex]\[ 49y^2 - 49y + 6 = 0 \][/tex]
## Part (a)
### (i) Write down the value of [tex]\( q \)[/tex].
We know that for a quadratic equation [tex]\( x^2 - p x + q = 0 \)[/tex] with roots [tex]\( \alpha \)[/tex] and [tex]\( \beta \)[/tex]:
- [tex]\( \alpha + \beta = p \)[/tex]
- [tex]\( \alpha \beta = q \)[/tex]
Given [tex]\( 2 \alpha \beta = 3 \)[/tex], we can find [tex]\( \alpha \beta \)[/tex]:
[tex]\[ 2 \alpha \beta = 3 \implies \alpha \beta = \frac{3}{2} \][/tex]
Thus, the value of [tex]\( q \)[/tex] is:
[tex]\[ q = \frac{3}{2} \][/tex]
### (ii) Find an expression, in terms of [tex]\( k \)[/tex], for [tex]\( p \)[/tex].
We are also given the expression:
[tex]\[ 4 (\alpha^2 + \beta^2) = k^2 - 6k - 3 \][/tex]
We use the identity [tex]\( \alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha \beta \)[/tex]:
[tex]\[ 4 (\alpha^2 + \beta^2) = 4 \left( (\alpha + \beta)^2 - 2 \alpha \beta \right) \][/tex]
[tex]\[ 4 \left( (\alpha + \beta)^2 - 2 \alpha \beta \right) = k^2 - 6k - 3 \][/tex]
We already know that [tex]\( \alpha + \beta = p \)[/tex] and [tex]\( \alpha \beta = \frac{3}{2} \)[/tex]:
[tex]\[ 4 \left( p^2 - 2 \times \frac{3}{2} \right) = k^2 - 6k - 3 \][/tex]
[tex]\[ 4 \left( p^2 - 3 \right) = k^2 - 6k - 3 \][/tex]
[tex]\[ 4p^2 - 12 = k^2 - 6k - 3 \][/tex]
[tex]\[ 4p^2 = k^2 - 6k + 9 \][/tex]
[tex]\[ 4p^2 = (k - 3)^2 \][/tex]
Taking the square root of both sides, we get:
[tex]\[ 2p = k - 3 \][/tex]
Thus:
[tex]\[ p = \frac{k - 3}{2} \][/tex]
## Part (b)
Given also that [tex]\( 7 \alpha \beta = 3 (\alpha + \beta) \)[/tex]:
[tex]\[ 7 \times \frac{3}{2} = 3 (\alpha + \beta) \][/tex]
[tex]\[ \frac{21}{2} = 3p \][/tex]
[tex]\[ p = \frac{21}{6} \][/tex]
[tex]\[ p = \frac{7}{2} \][/tex]
From part (a), we already have [tex]\( p = \frac{k - 3}{2} \)[/tex]:
[tex]\[ \frac{k - 3}{2} = \frac{7}{2} \][/tex]
[tex]\[ k - 3 = 7 \][/tex]
[tex]\[ k = 10 \][/tex]
## Part (c)
To form an equation with integer coefficients that has roots [tex]\( \frac{\alpha}{\alpha + \beta} \)[/tex] and [tex]\( \frac{\beta}{\alpha + \beta} \)[/tex], we start by recognizing the roots of the new polynomial. Let [tex]\( \alpha + \beta = p \)[/tex]:
[tex]\[ p = \frac{10 - 3}{2} = \frac{7}{2} \][/tex]
Since [tex]\(\alpha\)[/tex] and [tex]\(\beta\)[/tex] are the roots of the original polynomial, the sum [tex]\(\frac{\alpha}{\alpha + \beta} + \frac{\beta}{\alpha + \beta} = 1\)[/tex].
Let the roots be [tex]\( \frac{\alpha}{\alpha + \beta} \)[/tex] and [tex]\( \frac{\beta}{\alpha + \beta} \)[/tex]:
[tex]\[ \frac{\alpha}{p} + \frac{\beta}{p} = 1 \][/tex]
The polynomial we seek is:
[tex]\[ y^2 - y + r = 0 \][/tex]
Given that the product of roots [tex]\( \frac{\alpha}{\alpha + \beta} \times \frac{\beta}{\alpha + \beta} \)[/tex] is equivalent to:
[tex]\[ \frac{\alpha \beta}{(\alpha + \beta)^2} \][/tex]
[tex]\[ \frac{\frac{3}{2}}{\left(\frac{7}{2}\right)^2} \][/tex]
[tex]\[ \frac{\frac{3}{2}}{\frac{49}{4}} \][/tex]
[tex]\[ \frac{3}{2} \times \frac{4}{49} \][/tex]
[tex]\[ \frac{12}{98} = \frac{6}{49} \][/tex]
Thus, [tex]\( r = \frac{6}{49} \)[/tex], but since we want integer coefficients, we can multiply through by 49 to clear the denominator:
[tex]\[ 49y^2 - 49y + 6 = 0 \][/tex]
Therefore, the polynomial equation with integer coefficients is:
[tex]\[ 49y^2 - 49y + 6 = 0 \][/tex]
Thank you for using this platform to share and learn. Don't hesitate to keep asking and answering. We value every contribution you make. Your search for answers ends at IDNLearn.com. Thank you for visiting, and we hope to assist you again soon.