Find solutions to your problems with the help of IDNLearn.com's knowledgeable users. Join our community to receive prompt and reliable responses to your questions from experienced professionals.
Sagot :
To solve the quadratic equation [tex]\( p^2 + 11p - 12 = 0 \)[/tex] using the quadratic formula, follow these steps:
1. Identify the coefficients:
The quadratic formula is given by:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
In our equation [tex]\( p^2 + 11p - 12 = 0 \)[/tex], the coefficients are:
[tex]\[ a = 1, \quad b = 11, \quad c = -12 \][/tex]
2. Calculate the discriminant:
The discriminant [tex]\(\Delta\)[/tex] is the part of the quadratic formula under the square root:
[tex]\[ \Delta = b^2 - 4ac \][/tex]
Substituting the values of [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(c\)[/tex]:
[tex]\[ \Delta = 11^2 - 4 \times 1 \times -12 \][/tex]
Calculate [tex]\(11^2 = 121\)[/tex] and [tex]\(4 \times 1 \times -12 = -48\)[/tex], thus:
[tex]\[ \Delta = 121 + 48 = 169 \][/tex]
So, the discriminant [tex]\(\Delta = 169\)[/tex].
3. Calculate the two solutions using the quadratic formula:
The quadratic formula gives us two potential solutions, using the [tex]\(\pm\)[/tex] sign. We need to compute both:
[tex]\[ p = \frac{-b \pm \sqrt{\Delta}}{2a} \][/tex]
Substituting the values [tex]\(b = 11\)[/tex], [tex]\(\Delta = 169\)[/tex], and [tex]\(a = 1\)[/tex]:
[tex]\[ p = \frac{-11 \pm \sqrt{169}}{2 \times 1} \][/tex]
Calculate [tex]\(\sqrt{169} = 13\)[/tex]:
[tex]\[ p = \frac{-11 \pm 13}{2} \][/tex]
4. Find the individual solutions:
Splitting into two cases, we have:
Case 1 ([tex]\(+\)[/tex] sign):
[tex]\[ p_1 = \frac{-11 + 13}{2} = \frac{2}{2} = 1 \][/tex]
Case 2 ([tex]\(-\)[/tex] sign):
[tex]\[ p_2 = \frac{-11 - 13}{2} = \frac{-24}{2} = -12 \][/tex]
So, the two solutions to the quadratic equation [tex]\( p^2 + 11p - 12 = 0 \)[/tex] are:
[tex]\[ p_1 = 1 \quad \text{and} \quad p_2 = -12 \][/tex]
In summary:
- The discriminant is [tex]\( \Delta = 169 \)[/tex].
- The solutions are [tex]\( p_1 = 1 \)[/tex] and [tex]\( p_2 = -12 \)[/tex].
1. Identify the coefficients:
The quadratic formula is given by:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
In our equation [tex]\( p^2 + 11p - 12 = 0 \)[/tex], the coefficients are:
[tex]\[ a = 1, \quad b = 11, \quad c = -12 \][/tex]
2. Calculate the discriminant:
The discriminant [tex]\(\Delta\)[/tex] is the part of the quadratic formula under the square root:
[tex]\[ \Delta = b^2 - 4ac \][/tex]
Substituting the values of [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(c\)[/tex]:
[tex]\[ \Delta = 11^2 - 4 \times 1 \times -12 \][/tex]
Calculate [tex]\(11^2 = 121\)[/tex] and [tex]\(4 \times 1 \times -12 = -48\)[/tex], thus:
[tex]\[ \Delta = 121 + 48 = 169 \][/tex]
So, the discriminant [tex]\(\Delta = 169\)[/tex].
3. Calculate the two solutions using the quadratic formula:
The quadratic formula gives us two potential solutions, using the [tex]\(\pm\)[/tex] sign. We need to compute both:
[tex]\[ p = \frac{-b \pm \sqrt{\Delta}}{2a} \][/tex]
Substituting the values [tex]\(b = 11\)[/tex], [tex]\(\Delta = 169\)[/tex], and [tex]\(a = 1\)[/tex]:
[tex]\[ p = \frac{-11 \pm \sqrt{169}}{2 \times 1} \][/tex]
Calculate [tex]\(\sqrt{169} = 13\)[/tex]:
[tex]\[ p = \frac{-11 \pm 13}{2} \][/tex]
4. Find the individual solutions:
Splitting into two cases, we have:
Case 1 ([tex]\(+\)[/tex] sign):
[tex]\[ p_1 = \frac{-11 + 13}{2} = \frac{2}{2} = 1 \][/tex]
Case 2 ([tex]\(-\)[/tex] sign):
[tex]\[ p_2 = \frac{-11 - 13}{2} = \frac{-24}{2} = -12 \][/tex]
So, the two solutions to the quadratic equation [tex]\( p^2 + 11p - 12 = 0 \)[/tex] are:
[tex]\[ p_1 = 1 \quad \text{and} \quad p_2 = -12 \][/tex]
In summary:
- The discriminant is [tex]\( \Delta = 169 \)[/tex].
- The solutions are [tex]\( p_1 = 1 \)[/tex] and [tex]\( p_2 = -12 \)[/tex].
We appreciate your presence here. Keep sharing knowledge and helping others find the answers they need. This community is the perfect place to learn together. Thank you for visiting IDNLearn.com. We’re here to provide accurate and reliable answers, so visit us again soon.