Get detailed and reliable answers to your questions with IDNLearn.com. Our experts are ready to provide in-depth answers and practical solutions to any questions you may have.
Sagot :
To determine the value of [tex]\( P \)[/tex], which is the initial price at which Jason bought the car in 2020, given that the value of the car in 2022 is \[tex]$12,696, let's analyze how the depreciation works over the years.
1. Identify the given values and unknowns:
- The car’s value in 2022, which is \( t = 2 \) years after 2020, is given as \$[/tex]12,696.
- We are given four possible values for [tex]\( P \)[/tex] (the initial price in 2020): [tex]\(\$ 6,900\)[/tex], [tex]\(\$ 13,800\)[/tex], [tex]\(\$ 15,000\)[/tex], and [tex]\(\$ 20,000\)[/tex].
- Let [tex]\( r \)[/tex] be the annual depreciation rate.
2. Set up the depreciation formula:
- The value of the car decreases at a fixed percentage rate each year. If the initial value in 2020 is [tex]\( P \)[/tex], then the value after [tex]\( t \)[/tex] years can be modeled as:
[tex]\[ V(t) = P \times (1 - r)^t \][/tex]
- Given [tex]\( t = 2 \)[/tex], we can write:
[tex]\[ V(2) = P \times (1 - r)^2 \][/tex]
- Substituting [tex]\( V(2) = 12,696 \)[/tex], we get:
[tex]\[ 12,696 = P \times (1 - r)^2 \][/tex]
3. Solve for each possible option of [tex]\( P \)[/tex]:
- Option (A) [tex]\( P = 6,900 \)[/tex]:
[tex]\[ 12,696 = 6,900 \times (1 - r)^2 \quad (\text{which clearly does not fit as } 12,696 > 6,900) \][/tex]
- Option (B) [tex]\( P = 13,800 \)[/tex]:
[tex]\[ 12,696 = 13,800 \times (1 - r)^2 \][/tex]
Dividing both sides by 13,800,
[tex]\[ \frac{12,696}{13,800} = (1 - r)^2 \][/tex]
Simplifying,
[tex]\[ 1 - r = \sqrt{\frac{12,696}{13,800}} \][/tex]
Solving the square root,
[tex]\[ 1 - r = \sqrt{0.92} \][/tex]
Therefore,
[tex]\[ r = 1 - \sqrt{0.92} \][/tex]
- Option (C) [tex]\( P = 15,000 \)[/tex]:
[tex]\[ 12,696 \ne 15,000 \times (1 - r)^2 \quad (\text{as } 12,696 < 15,000) \][/tex]
- Option (D) [tex]\( P = 20,000 \)[/tex]:
[tex]\[ 12,696 \ne 20,000 \times (1 - r)^2 \quad (\text{as } 12,696 < 20,000) \][/tex]
4. Validating Option (B):
- Calculating [tex]\( \sqrt{\frac{12,696}{13,800}} \)[/tex]:
[tex]\[ \sqrt{0.92} \approx 0.96 \][/tex]
Thus, the calculated depreciation rate [tex]\( r \)[/tex] is:
[tex]\[ r = 1 - 0.96 \approx 0.04 \][/tex]
Therefore, the initial price of the car [tex]\( P \)[/tex] is [tex]\(\$ 13,800\)[/tex] and the depreciation rate is approximately [tex]\( 1 - \frac{\sqrt{23}}{5} \)[/tex], confirming that:
- The value of [tex]\( P \)[/tex] is [tex]\(\$ 13,800 \)[/tex].
So, the correct answer is:
(B) [tex]\( P = \$13,800 \)[/tex]
- We are given four possible values for [tex]\( P \)[/tex] (the initial price in 2020): [tex]\(\$ 6,900\)[/tex], [tex]\(\$ 13,800\)[/tex], [tex]\(\$ 15,000\)[/tex], and [tex]\(\$ 20,000\)[/tex].
- Let [tex]\( r \)[/tex] be the annual depreciation rate.
2. Set up the depreciation formula:
- The value of the car decreases at a fixed percentage rate each year. If the initial value in 2020 is [tex]\( P \)[/tex], then the value after [tex]\( t \)[/tex] years can be modeled as:
[tex]\[ V(t) = P \times (1 - r)^t \][/tex]
- Given [tex]\( t = 2 \)[/tex], we can write:
[tex]\[ V(2) = P \times (1 - r)^2 \][/tex]
- Substituting [tex]\( V(2) = 12,696 \)[/tex], we get:
[tex]\[ 12,696 = P \times (1 - r)^2 \][/tex]
3. Solve for each possible option of [tex]\( P \)[/tex]:
- Option (A) [tex]\( P = 6,900 \)[/tex]:
[tex]\[ 12,696 = 6,900 \times (1 - r)^2 \quad (\text{which clearly does not fit as } 12,696 > 6,900) \][/tex]
- Option (B) [tex]\( P = 13,800 \)[/tex]:
[tex]\[ 12,696 = 13,800 \times (1 - r)^2 \][/tex]
Dividing both sides by 13,800,
[tex]\[ \frac{12,696}{13,800} = (1 - r)^2 \][/tex]
Simplifying,
[tex]\[ 1 - r = \sqrt{\frac{12,696}{13,800}} \][/tex]
Solving the square root,
[tex]\[ 1 - r = \sqrt{0.92} \][/tex]
Therefore,
[tex]\[ r = 1 - \sqrt{0.92} \][/tex]
- Option (C) [tex]\( P = 15,000 \)[/tex]:
[tex]\[ 12,696 \ne 15,000 \times (1 - r)^2 \quad (\text{as } 12,696 < 15,000) \][/tex]
- Option (D) [tex]\( P = 20,000 \)[/tex]:
[tex]\[ 12,696 \ne 20,000 \times (1 - r)^2 \quad (\text{as } 12,696 < 20,000) \][/tex]
4. Validating Option (B):
- Calculating [tex]\( \sqrt{\frac{12,696}{13,800}} \)[/tex]:
[tex]\[ \sqrt{0.92} \approx 0.96 \][/tex]
Thus, the calculated depreciation rate [tex]\( r \)[/tex] is:
[tex]\[ r = 1 - 0.96 \approx 0.04 \][/tex]
Therefore, the initial price of the car [tex]\( P \)[/tex] is [tex]\(\$ 13,800\)[/tex] and the depreciation rate is approximately [tex]\( 1 - \frac{\sqrt{23}}{5} \)[/tex], confirming that:
- The value of [tex]\( P \)[/tex] is [tex]\(\$ 13,800 \)[/tex].
So, the correct answer is:
(B) [tex]\( P = \$13,800 \)[/tex]
Thank you for being part of this discussion. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. Discover the answers you need at IDNLearn.com. Thanks for visiting, and come back soon for more valuable insights.