Find expert advice and community support for all your questions on IDNLearn.com. Ask your questions and receive accurate, in-depth answers from our knowledgeable community members.
Sagot :
To determine the value of [tex]\( P \)[/tex], which is the initial price at which Jason bought the car in 2020, given that the value of the car in 2022 is \[tex]$12,696, let's analyze how the depreciation works over the years.
1. Identify the given values and unknowns:
- The car’s value in 2022, which is \( t = 2 \) years after 2020, is given as \$[/tex]12,696.
- We are given four possible values for [tex]\( P \)[/tex] (the initial price in 2020): [tex]\(\$ 6,900\)[/tex], [tex]\(\$ 13,800\)[/tex], [tex]\(\$ 15,000\)[/tex], and [tex]\(\$ 20,000\)[/tex].
- Let [tex]\( r \)[/tex] be the annual depreciation rate.
2. Set up the depreciation formula:
- The value of the car decreases at a fixed percentage rate each year. If the initial value in 2020 is [tex]\( P \)[/tex], then the value after [tex]\( t \)[/tex] years can be modeled as:
[tex]\[ V(t) = P \times (1 - r)^t \][/tex]
- Given [tex]\( t = 2 \)[/tex], we can write:
[tex]\[ V(2) = P \times (1 - r)^2 \][/tex]
- Substituting [tex]\( V(2) = 12,696 \)[/tex], we get:
[tex]\[ 12,696 = P \times (1 - r)^2 \][/tex]
3. Solve for each possible option of [tex]\( P \)[/tex]:
- Option (A) [tex]\( P = 6,900 \)[/tex]:
[tex]\[ 12,696 = 6,900 \times (1 - r)^2 \quad (\text{which clearly does not fit as } 12,696 > 6,900) \][/tex]
- Option (B) [tex]\( P = 13,800 \)[/tex]:
[tex]\[ 12,696 = 13,800 \times (1 - r)^2 \][/tex]
Dividing both sides by 13,800,
[tex]\[ \frac{12,696}{13,800} = (1 - r)^2 \][/tex]
Simplifying,
[tex]\[ 1 - r = \sqrt{\frac{12,696}{13,800}} \][/tex]
Solving the square root,
[tex]\[ 1 - r = \sqrt{0.92} \][/tex]
Therefore,
[tex]\[ r = 1 - \sqrt{0.92} \][/tex]
- Option (C) [tex]\( P = 15,000 \)[/tex]:
[tex]\[ 12,696 \ne 15,000 \times (1 - r)^2 \quad (\text{as } 12,696 < 15,000) \][/tex]
- Option (D) [tex]\( P = 20,000 \)[/tex]:
[tex]\[ 12,696 \ne 20,000 \times (1 - r)^2 \quad (\text{as } 12,696 < 20,000) \][/tex]
4. Validating Option (B):
- Calculating [tex]\( \sqrt{\frac{12,696}{13,800}} \)[/tex]:
[tex]\[ \sqrt{0.92} \approx 0.96 \][/tex]
Thus, the calculated depreciation rate [tex]\( r \)[/tex] is:
[tex]\[ r = 1 - 0.96 \approx 0.04 \][/tex]
Therefore, the initial price of the car [tex]\( P \)[/tex] is [tex]\(\$ 13,800\)[/tex] and the depreciation rate is approximately [tex]\( 1 - \frac{\sqrt{23}}{5} \)[/tex], confirming that:
- The value of [tex]\( P \)[/tex] is [tex]\(\$ 13,800 \)[/tex].
So, the correct answer is:
(B) [tex]\( P = \$13,800 \)[/tex]
- We are given four possible values for [tex]\( P \)[/tex] (the initial price in 2020): [tex]\(\$ 6,900\)[/tex], [tex]\(\$ 13,800\)[/tex], [tex]\(\$ 15,000\)[/tex], and [tex]\(\$ 20,000\)[/tex].
- Let [tex]\( r \)[/tex] be the annual depreciation rate.
2. Set up the depreciation formula:
- The value of the car decreases at a fixed percentage rate each year. If the initial value in 2020 is [tex]\( P \)[/tex], then the value after [tex]\( t \)[/tex] years can be modeled as:
[tex]\[ V(t) = P \times (1 - r)^t \][/tex]
- Given [tex]\( t = 2 \)[/tex], we can write:
[tex]\[ V(2) = P \times (1 - r)^2 \][/tex]
- Substituting [tex]\( V(2) = 12,696 \)[/tex], we get:
[tex]\[ 12,696 = P \times (1 - r)^2 \][/tex]
3. Solve for each possible option of [tex]\( P \)[/tex]:
- Option (A) [tex]\( P = 6,900 \)[/tex]:
[tex]\[ 12,696 = 6,900 \times (1 - r)^2 \quad (\text{which clearly does not fit as } 12,696 > 6,900) \][/tex]
- Option (B) [tex]\( P = 13,800 \)[/tex]:
[tex]\[ 12,696 = 13,800 \times (1 - r)^2 \][/tex]
Dividing both sides by 13,800,
[tex]\[ \frac{12,696}{13,800} = (1 - r)^2 \][/tex]
Simplifying,
[tex]\[ 1 - r = \sqrt{\frac{12,696}{13,800}} \][/tex]
Solving the square root,
[tex]\[ 1 - r = \sqrt{0.92} \][/tex]
Therefore,
[tex]\[ r = 1 - \sqrt{0.92} \][/tex]
- Option (C) [tex]\( P = 15,000 \)[/tex]:
[tex]\[ 12,696 \ne 15,000 \times (1 - r)^2 \quad (\text{as } 12,696 < 15,000) \][/tex]
- Option (D) [tex]\( P = 20,000 \)[/tex]:
[tex]\[ 12,696 \ne 20,000 \times (1 - r)^2 \quad (\text{as } 12,696 < 20,000) \][/tex]
4. Validating Option (B):
- Calculating [tex]\( \sqrt{\frac{12,696}{13,800}} \)[/tex]:
[tex]\[ \sqrt{0.92} \approx 0.96 \][/tex]
Thus, the calculated depreciation rate [tex]\( r \)[/tex] is:
[tex]\[ r = 1 - 0.96 \approx 0.04 \][/tex]
Therefore, the initial price of the car [tex]\( P \)[/tex] is [tex]\(\$ 13,800\)[/tex] and the depreciation rate is approximately [tex]\( 1 - \frac{\sqrt{23}}{5} \)[/tex], confirming that:
- The value of [tex]\( P \)[/tex] is [tex]\(\$ 13,800 \)[/tex].
So, the correct answer is:
(B) [tex]\( P = \$13,800 \)[/tex]
We appreciate your presence here. Keep sharing knowledge and helping others find the answers they need. This community is the perfect place to learn together. Your questions are important to us at IDNLearn.com. Thanks for stopping by, and come back for more reliable solutions.