Get the information you need from a community of experts on IDNLearn.com. Our experts provide timely and accurate responses to help you navigate any topic or issue with confidence.
Sagot :
To determine the radius of a planet given its mass and surface gravity, we can use the universal law of gravitation. Here’s a step-by-step solution to solving this problem:
1. Identify the given values and the required formula:
- The mass of the planet, [tex]\( M = 3.40 \times 10^{23} \, \text{kg} \)[/tex]
- The surface gravity, [tex]\( g = 6.50 \, \text{m/s}^2 \)[/tex]
- The gravitational constant, [tex]\( G = 6.67430 \times 10^{-11} \, \text{m}^3 \text{kg}^{-1} \text{s}^{-2} \)[/tex]
2. Recognize the formula for gravitational force (weight):
[tex]\[ g = \frac{G \cdot M}{r^2} \][/tex]
where:
- [tex]\( g \)[/tex] is the surface gravity,
- [tex]\( G \)[/tex] is the gravitational constant,
- [tex]\( M \)[/tex] is the mass of the planet,
- [tex]\( r \)[/tex] is the radius of the planet.
3. Rearrange the formula to solve for the radius [tex]\( r \)[/tex]:
Start by isolating [tex]\( r^2 \)[/tex]:
[tex]\[ r^2 = \frac{G \cdot M}{g} \][/tex]
Then take the square root of both sides to solve for [tex]\( r \)[/tex]:
[tex]\[ r = \sqrt{\frac{G \cdot M}{g}} \][/tex]
4. Substitute the known values into the equation:
- [tex]\( G = 6.67430 \times 10^{-11} \, \text{m}^3 \text{kg}^{-1} \text{s}^{-2} \)[/tex]
- [tex]\( M = 3.40 \times 10^{23} \, \text{kg} \)[/tex]
- [tex]\( g = 6.50 \, \text{m/s}^2 \)[/tex]
5. Calculate the value inside the square root:
[tex]\[ \frac{G \cdot M}{g} = \frac{6.67430 \times 10^{-11} \, \text{m}^3 \text{kg}^{-1} \text{s}^{-2} \times 3.40 \times 10^{23} \, \text{kg}}{6.50 \, \text{m/s}^2} \][/tex]
[tex]\[ \frac{6.67430 \times 10^{-11} \times 3.40 \times 10^{23}}{6.50} = 3.4905761538461538 \times 10^{12} \, \text{m}^2 \][/tex]
6. Take the square root to find the radius [tex]\( r \)[/tex]:
[tex]\[ r = \sqrt{3.4905761538461538 \times 10^{12}} \approx 1868467.9038432282 \, \text{m} \][/tex]
Thus, the radius of the planet is approximately [tex]\( 1,868,467.90 \, \text{m} \)[/tex], or about [tex]\( 1.87 \times 10^6 \, \text{m} \)[/tex].
1. Identify the given values and the required formula:
- The mass of the planet, [tex]\( M = 3.40 \times 10^{23} \, \text{kg} \)[/tex]
- The surface gravity, [tex]\( g = 6.50 \, \text{m/s}^2 \)[/tex]
- The gravitational constant, [tex]\( G = 6.67430 \times 10^{-11} \, \text{m}^3 \text{kg}^{-1} \text{s}^{-2} \)[/tex]
2. Recognize the formula for gravitational force (weight):
[tex]\[ g = \frac{G \cdot M}{r^2} \][/tex]
where:
- [tex]\( g \)[/tex] is the surface gravity,
- [tex]\( G \)[/tex] is the gravitational constant,
- [tex]\( M \)[/tex] is the mass of the planet,
- [tex]\( r \)[/tex] is the radius of the planet.
3. Rearrange the formula to solve for the radius [tex]\( r \)[/tex]:
Start by isolating [tex]\( r^2 \)[/tex]:
[tex]\[ r^2 = \frac{G \cdot M}{g} \][/tex]
Then take the square root of both sides to solve for [tex]\( r \)[/tex]:
[tex]\[ r = \sqrt{\frac{G \cdot M}{g}} \][/tex]
4. Substitute the known values into the equation:
- [tex]\( G = 6.67430 \times 10^{-11} \, \text{m}^3 \text{kg}^{-1} \text{s}^{-2} \)[/tex]
- [tex]\( M = 3.40 \times 10^{23} \, \text{kg} \)[/tex]
- [tex]\( g = 6.50 \, \text{m/s}^2 \)[/tex]
5. Calculate the value inside the square root:
[tex]\[ \frac{G \cdot M}{g} = \frac{6.67430 \times 10^{-11} \, \text{m}^3 \text{kg}^{-1} \text{s}^{-2} \times 3.40 \times 10^{23} \, \text{kg}}{6.50 \, \text{m/s}^2} \][/tex]
[tex]\[ \frac{6.67430 \times 10^{-11} \times 3.40 \times 10^{23}}{6.50} = 3.4905761538461538 \times 10^{12} \, \text{m}^2 \][/tex]
6. Take the square root to find the radius [tex]\( r \)[/tex]:
[tex]\[ r = \sqrt{3.4905761538461538 \times 10^{12}} \approx 1868467.9038432282 \, \text{m} \][/tex]
Thus, the radius of the planet is approximately [tex]\( 1,868,467.90 \, \text{m} \)[/tex], or about [tex]\( 1.87 \times 10^6 \, \text{m} \)[/tex].
We appreciate your presence here. Keep sharing knowledge and helping others find the answers they need. This community is the perfect place to learn together. For precise answers, trust IDNLearn.com. Thank you for visiting, and we look forward to helping you again soon.