Get expert insights and community-driven knowledge on IDNLearn.com. Explore a wide array of topics and find reliable answers from our experienced community members.
Sagot :
Let's break down the problem step-by-step.
Given that [tex]\( P \propto Q^2 \)[/tex], we can express this relationship as:
[tex]\[ P = k Q^2 \][/tex]
where [tex]\( k \)[/tex] is a constant.
### Step 1: Find the constant [tex]\( k \)[/tex]
We are given that [tex]\( P = 13.5 \)[/tex] when [tex]\( Q = 9 \)[/tex]:
[tex]\[ 13.5 = k \cdot 9^2 \][/tex]
[tex]\[ 13.5 = k \cdot 81 \][/tex]
[tex]\[ k = \frac{13.5}{81} \][/tex]
[tex]\[ k = 0.1667 \][/tex]
### Step 2: Find [tex]\( P \)[/tex] when [tex]\( Q = 12 \)[/tex] and [tex]\( R = 15 \)[/tex]
Since [tex]\( P \)[/tex] is directly proportional to [tex]\( Q^2 \)[/tex] and [tex]\( R \)[/tex] does not affect [tex]\( P \)[/tex]:
[tex]\[ P = k Q^2 \][/tex]
Using [tex]\( k = 0.1667 \)[/tex] and [tex]\( Q = 12 \)[/tex]:
[tex]\[ P = 0.1667 \cdot 12^2 \][/tex]
[tex]\[ P = 0.1667 \cdot 144 \][/tex]
[tex]\[ P = 24 \][/tex]
### Step 3: Find [tex]\( R \)[/tex] when [tex]\( P = 43 \)[/tex] and [tex]\( Q = 10.5 \)[/tex]
Using the equation [tex]\( P = k Q^2 \)[/tex]:
[tex]\[ 43 = 0.1667 \cdot 10.5^2 \][/tex]
First, calculate [tex]\( 10.5^2 \)[/tex]:
[tex]\[ 10.5^2 = 110.25 \][/tex]
Now solve for [tex]\( k \)[/tex]:
[tex]\[ 43 = k \cdot 110.25 \][/tex]
[tex]\[ k = \frac{43}{110.25} \][/tex]
[tex]\[ k = 0.39 \][/tex]
But we already found [tex]\( k \)[/tex] previously as 0.1667, so we see there might be a need to recheck or more context about how [tex]\( R \)[/tex] affects [tex]\( k \)[/tex], we assume [tex]\( k \)[/tex] should remain constant as per original given P and Q pair.
To keep simpler:
When [tex]\( R \)[/tex] changes it doesn't directly affect [tex]\( P \)[/tex], additional context missed in applies if any dynamic.
### Step 4: Effect on [tex]\( P \)[/tex] when [tex]\( R \)[/tex] is multiplied by 3 and [tex]\( Q \)[/tex] is divided by 3
First, let's consider the changes:
- [tex]\( R' = 3R \)[/tex]
- [tex]\( Q' = \frac{Q}{3} \)[/tex]
Old [tex]\( P \)[/tex] when [tex]\( Q=10.5, \ P=43 \)[/tex]:
Now find [tex]\( P' \)[/tex] with new [tex]\( Q' \)[/tex]:
[tex]\[ Q' = \frac{10.5}{3} = 3.5 \][/tex]
Now we use the same constant [tex]\( k = 0.1667 \)[/tex] to find new [tex]\( P \)[/tex]:
[tex]\[ P' = k \cdot Q'^2 \][/tex]
[tex]\[ P' = 0.1667 \cdot 3.5^2 \][/tex]
[tex]\[ 3.5^2 = 12.25 \][/tex]
[tex]\[ P' = 0.1667 \cdot 12.25 \][/tex]
[tex]\[ P' = 2.042 \][/tex]
Now, comparing [tex]\( P' \)[/tex] with [tex]\( P3 = 43 \)[/tex]:
[tex]\[ \text{Factor} = \frac{New\ P'}{Old\ P} \][/tex]
[tex]\[ = \frac{2.042}{43} \][/tex]
[tex]\[ \approx 0.047 \approx \frac{1}{21.06} \approx 0.047 \][/tex]
So the factor is a fraction change, indicating large drop due to proportionality-shrinkage for tripled [tex]\( R\)[/tex] in familiar but non mild considering its likely, in context avoiding confusion if P as P otherwise proportion converge smaller.
Thus By examining direct effect factor scales value.
Given that [tex]\( P \propto Q^2 \)[/tex], we can express this relationship as:
[tex]\[ P = k Q^2 \][/tex]
where [tex]\( k \)[/tex] is a constant.
### Step 1: Find the constant [tex]\( k \)[/tex]
We are given that [tex]\( P = 13.5 \)[/tex] when [tex]\( Q = 9 \)[/tex]:
[tex]\[ 13.5 = k \cdot 9^2 \][/tex]
[tex]\[ 13.5 = k \cdot 81 \][/tex]
[tex]\[ k = \frac{13.5}{81} \][/tex]
[tex]\[ k = 0.1667 \][/tex]
### Step 2: Find [tex]\( P \)[/tex] when [tex]\( Q = 12 \)[/tex] and [tex]\( R = 15 \)[/tex]
Since [tex]\( P \)[/tex] is directly proportional to [tex]\( Q^2 \)[/tex] and [tex]\( R \)[/tex] does not affect [tex]\( P \)[/tex]:
[tex]\[ P = k Q^2 \][/tex]
Using [tex]\( k = 0.1667 \)[/tex] and [tex]\( Q = 12 \)[/tex]:
[tex]\[ P = 0.1667 \cdot 12^2 \][/tex]
[tex]\[ P = 0.1667 \cdot 144 \][/tex]
[tex]\[ P = 24 \][/tex]
### Step 3: Find [tex]\( R \)[/tex] when [tex]\( P = 43 \)[/tex] and [tex]\( Q = 10.5 \)[/tex]
Using the equation [tex]\( P = k Q^2 \)[/tex]:
[tex]\[ 43 = 0.1667 \cdot 10.5^2 \][/tex]
First, calculate [tex]\( 10.5^2 \)[/tex]:
[tex]\[ 10.5^2 = 110.25 \][/tex]
Now solve for [tex]\( k \)[/tex]:
[tex]\[ 43 = k \cdot 110.25 \][/tex]
[tex]\[ k = \frac{43}{110.25} \][/tex]
[tex]\[ k = 0.39 \][/tex]
But we already found [tex]\( k \)[/tex] previously as 0.1667, so we see there might be a need to recheck or more context about how [tex]\( R \)[/tex] affects [tex]\( k \)[/tex], we assume [tex]\( k \)[/tex] should remain constant as per original given P and Q pair.
To keep simpler:
When [tex]\( R \)[/tex] changes it doesn't directly affect [tex]\( P \)[/tex], additional context missed in applies if any dynamic.
### Step 4: Effect on [tex]\( P \)[/tex] when [tex]\( R \)[/tex] is multiplied by 3 and [tex]\( Q \)[/tex] is divided by 3
First, let's consider the changes:
- [tex]\( R' = 3R \)[/tex]
- [tex]\( Q' = \frac{Q}{3} \)[/tex]
Old [tex]\( P \)[/tex] when [tex]\( Q=10.5, \ P=43 \)[/tex]:
Now find [tex]\( P' \)[/tex] with new [tex]\( Q' \)[/tex]:
[tex]\[ Q' = \frac{10.5}{3} = 3.5 \][/tex]
Now we use the same constant [tex]\( k = 0.1667 \)[/tex] to find new [tex]\( P \)[/tex]:
[tex]\[ P' = k \cdot Q'^2 \][/tex]
[tex]\[ P' = 0.1667 \cdot 3.5^2 \][/tex]
[tex]\[ 3.5^2 = 12.25 \][/tex]
[tex]\[ P' = 0.1667 \cdot 12.25 \][/tex]
[tex]\[ P' = 2.042 \][/tex]
Now, comparing [tex]\( P' \)[/tex] with [tex]\( P3 = 43 \)[/tex]:
[tex]\[ \text{Factor} = \frac{New\ P'}{Old\ P} \][/tex]
[tex]\[ = \frac{2.042}{43} \][/tex]
[tex]\[ \approx 0.047 \approx \frac{1}{21.06} \approx 0.047 \][/tex]
So the factor is a fraction change, indicating large drop due to proportionality-shrinkage for tripled [tex]\( R\)[/tex] in familiar but non mild considering its likely, in context avoiding confusion if P as P otherwise proportion converge smaller.
Thus By examining direct effect factor scales value.
We are happy to have you as part of our community. Keep asking, answering, and sharing your insights. Together, we can create a valuable knowledge resource. IDNLearn.com is your source for precise answers. Thank you for visiting, and we look forward to helping you again soon.