Discover new information and get your questions answered with IDNLearn.com. Discover the reliable solutions you need with help from our comprehensive and accurate Q&A platform.
Sagot :
Sure! Let's solve the given problem step by step:
We are given the derivative of a function [tex]\( f(x) \)[/tex] as:
[tex]\[ f'(x) = \frac{2}{(3 - 2x)^2} \][/tex]
Our goal is to find the original function [tex]\( f(x) \)[/tex].
Step 1: Set up the integral to find [tex]\( f(x) \)[/tex]
To find [tex]\( f(x) \)[/tex], we need to integrate [tex]\( f'(x) \)[/tex]:
[tex]\[ f(x) = \int f'(x) \, dx = \int \frac{2}{(3 - 2x)^2} \, dx \][/tex]
Step 2: Perform a substitution
Let's use the substitution method to solve the integral. Let:
[tex]\[ u = 3 - 2x \][/tex]
Then, the derivative of [tex]\( u \)[/tex] with respect to [tex]\( x \)[/tex] is:
[tex]\[ \frac{du}{dx} = -2 \][/tex]
Or:
[tex]\[ dx = \frac{du}{-2} \][/tex]
Substituting these into the integral, we get:
[tex]\[ f(x) = \int \frac{2}{u^2} \cdot \left( \frac{du}{-2} \right) \][/tex]
Simplifying inside the integral:
[tex]\[ f(x) = -\int \frac{2}{2} \cdot \frac{1}{u^2} \, du \][/tex]
[tex]\[ f(x) = -\int \frac{1}{u^2} \, du \][/tex]
Step 3: Integrate the function
Recall that:
[tex]\[ \int u^{-2} \, du = -u^{-1} + C = -\frac{1}{u} + C \][/tex]
Substitute back [tex]\( u = 3 - 2x \)[/tex]:
[tex]\[ f(x) = -\left( \frac{1}{3 - 2x} \right) + C \][/tex]
So the original function [tex]\( f(x) \)[/tex] is:
[tex]\[ f(x) = -\frac{1}{3 - 2x} + C \][/tex]
Step 4: Incorporate multiplying constants
Given [tex]\( f'(x) = \frac{2}{(3 - 2x)^2} \)[/tex], the integral will involve a constant multiple. So:
[tex]\[ f(x) = -\frac{2}{4x - 6} + C \][/tex]
Therefore, considering any initial condition, we incorporate [tex]\(C\)[/tex]:
[tex]\[ f(x) = -\frac{2}{4x - 6} + C \][/tex]
And the integral of [tex]\( f'(x) = \frac{2}{(3 - 2x)^2} \)[/tex] provides us:
[tex]\[ \boxed{ -\frac{2}{4x - 6} + C } \][/tex]
So the final answer, including a constant of integration, is:
[tex]\[ f(x) = -\frac{2}{4x - 6} + C \][/tex]
Where [tex]\( f'(x) = \frac{2}{(3 - 2x)^2} \)[/tex].
We are given the derivative of a function [tex]\( f(x) \)[/tex] as:
[tex]\[ f'(x) = \frac{2}{(3 - 2x)^2} \][/tex]
Our goal is to find the original function [tex]\( f(x) \)[/tex].
Step 1: Set up the integral to find [tex]\( f(x) \)[/tex]
To find [tex]\( f(x) \)[/tex], we need to integrate [tex]\( f'(x) \)[/tex]:
[tex]\[ f(x) = \int f'(x) \, dx = \int \frac{2}{(3 - 2x)^2} \, dx \][/tex]
Step 2: Perform a substitution
Let's use the substitution method to solve the integral. Let:
[tex]\[ u = 3 - 2x \][/tex]
Then, the derivative of [tex]\( u \)[/tex] with respect to [tex]\( x \)[/tex] is:
[tex]\[ \frac{du}{dx} = -2 \][/tex]
Or:
[tex]\[ dx = \frac{du}{-2} \][/tex]
Substituting these into the integral, we get:
[tex]\[ f(x) = \int \frac{2}{u^2} \cdot \left( \frac{du}{-2} \right) \][/tex]
Simplifying inside the integral:
[tex]\[ f(x) = -\int \frac{2}{2} \cdot \frac{1}{u^2} \, du \][/tex]
[tex]\[ f(x) = -\int \frac{1}{u^2} \, du \][/tex]
Step 3: Integrate the function
Recall that:
[tex]\[ \int u^{-2} \, du = -u^{-1} + C = -\frac{1}{u} + C \][/tex]
Substitute back [tex]\( u = 3 - 2x \)[/tex]:
[tex]\[ f(x) = -\left( \frac{1}{3 - 2x} \right) + C \][/tex]
So the original function [tex]\( f(x) \)[/tex] is:
[tex]\[ f(x) = -\frac{1}{3 - 2x} + C \][/tex]
Step 4: Incorporate multiplying constants
Given [tex]\( f'(x) = \frac{2}{(3 - 2x)^2} \)[/tex], the integral will involve a constant multiple. So:
[tex]\[ f(x) = -\frac{2}{4x - 6} + C \][/tex]
Therefore, considering any initial condition, we incorporate [tex]\(C\)[/tex]:
[tex]\[ f(x) = -\frac{2}{4x - 6} + C \][/tex]
And the integral of [tex]\( f'(x) = \frac{2}{(3 - 2x)^2} \)[/tex] provides us:
[tex]\[ \boxed{ -\frac{2}{4x - 6} + C } \][/tex]
So the final answer, including a constant of integration, is:
[tex]\[ f(x) = -\frac{2}{4x - 6} + C \][/tex]
Where [tex]\( f'(x) = \frac{2}{(3 - 2x)^2} \)[/tex].
We appreciate your contributions to this forum. Don't forget to check back for the latest answers. Keep asking, answering, and sharing useful information. For dependable answers, trust IDNLearn.com. Thank you for visiting, and we look forward to assisting you again.