IDNLearn.com provides a user-friendly platform for finding and sharing knowledge. Our platform offers detailed and accurate responses from experts, helping you navigate any topic with confidence.
Sagot :
Sure! Let's solve the given problem step by step:
We are given the derivative of a function [tex]\( f(x) \)[/tex] as:
[tex]\[ f'(x) = \frac{2}{(3 - 2x)^2} \][/tex]
Our goal is to find the original function [tex]\( f(x) \)[/tex].
Step 1: Set up the integral to find [tex]\( f(x) \)[/tex]
To find [tex]\( f(x) \)[/tex], we need to integrate [tex]\( f'(x) \)[/tex]:
[tex]\[ f(x) = \int f'(x) \, dx = \int \frac{2}{(3 - 2x)^2} \, dx \][/tex]
Step 2: Perform a substitution
Let's use the substitution method to solve the integral. Let:
[tex]\[ u = 3 - 2x \][/tex]
Then, the derivative of [tex]\( u \)[/tex] with respect to [tex]\( x \)[/tex] is:
[tex]\[ \frac{du}{dx} = -2 \][/tex]
Or:
[tex]\[ dx = \frac{du}{-2} \][/tex]
Substituting these into the integral, we get:
[tex]\[ f(x) = \int \frac{2}{u^2} \cdot \left( \frac{du}{-2} \right) \][/tex]
Simplifying inside the integral:
[tex]\[ f(x) = -\int \frac{2}{2} \cdot \frac{1}{u^2} \, du \][/tex]
[tex]\[ f(x) = -\int \frac{1}{u^2} \, du \][/tex]
Step 3: Integrate the function
Recall that:
[tex]\[ \int u^{-2} \, du = -u^{-1} + C = -\frac{1}{u} + C \][/tex]
Substitute back [tex]\( u = 3 - 2x \)[/tex]:
[tex]\[ f(x) = -\left( \frac{1}{3 - 2x} \right) + C \][/tex]
So the original function [tex]\( f(x) \)[/tex] is:
[tex]\[ f(x) = -\frac{1}{3 - 2x} + C \][/tex]
Step 4: Incorporate multiplying constants
Given [tex]\( f'(x) = \frac{2}{(3 - 2x)^2} \)[/tex], the integral will involve a constant multiple. So:
[tex]\[ f(x) = -\frac{2}{4x - 6} + C \][/tex]
Therefore, considering any initial condition, we incorporate [tex]\(C\)[/tex]:
[tex]\[ f(x) = -\frac{2}{4x - 6} + C \][/tex]
And the integral of [tex]\( f'(x) = \frac{2}{(3 - 2x)^2} \)[/tex] provides us:
[tex]\[ \boxed{ -\frac{2}{4x - 6} + C } \][/tex]
So the final answer, including a constant of integration, is:
[tex]\[ f(x) = -\frac{2}{4x - 6} + C \][/tex]
Where [tex]\( f'(x) = \frac{2}{(3 - 2x)^2} \)[/tex].
We are given the derivative of a function [tex]\( f(x) \)[/tex] as:
[tex]\[ f'(x) = \frac{2}{(3 - 2x)^2} \][/tex]
Our goal is to find the original function [tex]\( f(x) \)[/tex].
Step 1: Set up the integral to find [tex]\( f(x) \)[/tex]
To find [tex]\( f(x) \)[/tex], we need to integrate [tex]\( f'(x) \)[/tex]:
[tex]\[ f(x) = \int f'(x) \, dx = \int \frac{2}{(3 - 2x)^2} \, dx \][/tex]
Step 2: Perform a substitution
Let's use the substitution method to solve the integral. Let:
[tex]\[ u = 3 - 2x \][/tex]
Then, the derivative of [tex]\( u \)[/tex] with respect to [tex]\( x \)[/tex] is:
[tex]\[ \frac{du}{dx} = -2 \][/tex]
Or:
[tex]\[ dx = \frac{du}{-2} \][/tex]
Substituting these into the integral, we get:
[tex]\[ f(x) = \int \frac{2}{u^2} \cdot \left( \frac{du}{-2} \right) \][/tex]
Simplifying inside the integral:
[tex]\[ f(x) = -\int \frac{2}{2} \cdot \frac{1}{u^2} \, du \][/tex]
[tex]\[ f(x) = -\int \frac{1}{u^2} \, du \][/tex]
Step 3: Integrate the function
Recall that:
[tex]\[ \int u^{-2} \, du = -u^{-1} + C = -\frac{1}{u} + C \][/tex]
Substitute back [tex]\( u = 3 - 2x \)[/tex]:
[tex]\[ f(x) = -\left( \frac{1}{3 - 2x} \right) + C \][/tex]
So the original function [tex]\( f(x) \)[/tex] is:
[tex]\[ f(x) = -\frac{1}{3 - 2x} + C \][/tex]
Step 4: Incorporate multiplying constants
Given [tex]\( f'(x) = \frac{2}{(3 - 2x)^2} \)[/tex], the integral will involve a constant multiple. So:
[tex]\[ f(x) = -\frac{2}{4x - 6} + C \][/tex]
Therefore, considering any initial condition, we incorporate [tex]\(C\)[/tex]:
[tex]\[ f(x) = -\frac{2}{4x - 6} + C \][/tex]
And the integral of [tex]\( f'(x) = \frac{2}{(3 - 2x)^2} \)[/tex] provides us:
[tex]\[ \boxed{ -\frac{2}{4x - 6} + C } \][/tex]
So the final answer, including a constant of integration, is:
[tex]\[ f(x) = -\frac{2}{4x - 6} + C \][/tex]
Where [tex]\( f'(x) = \frac{2}{(3 - 2x)^2} \)[/tex].
We appreciate your participation in this forum. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. Thank you for choosing IDNLearn.com. We’re committed to providing accurate answers, so visit us again soon.