Find detailed and accurate answers to your questions on IDNLearn.com. Get prompt and accurate answers to your questions from our community of knowledgeable experts.
Sagot :
To find an expression for the area under the graph of [tex]\( f(x) = x \sqrt{x^3 + 9} \)[/tex] from [tex]\( x = 1 \)[/tex] to [tex]\( x = 5 \)[/tex] using right endpoints in a Riemann sum, follow these steps:
1. Partition the Interval: Divide the interval [tex]\([1, 5]\)[/tex] into [tex]\( n \)[/tex] subintervals of equal width. The width [tex]\(\Delta x\)[/tex] of each subinterval is given by:
[tex]\[ \Delta x = \frac{5 - 1}{n} = \frac{4}{n} \][/tex]
2. Determine Right Endpoints: The right endpoint of the [tex]\( i \)[/tex]-th subinterval is:
[tex]\[ x_i = 1 + i \Delta x \][/tex]
where [tex]\( i \)[/tex] ranges from 1 to [tex]\( n \)[/tex].
3. Evaluate the Function at Right Endpoints: Evaluate the function [tex]\( f(x) = x \sqrt{x^3 + 9} \)[/tex] at the right endpoints [tex]\( x_i \)[/tex]:
[tex]\[ f(x_i) = \left( 1 + i \frac{4}{n} \right) \sqrt{\left(1 + i \frac{4}{n} \right)^3 + 9} \][/tex]
4. Set Up the Riemann Sum: The Riemann sum using right endpoints for the area under [tex]\( f(x) \)[/tex] from [tex]\( x = 1 \)[/tex] to [tex]\( x = 5 \)[/tex] is:
[tex]\[ \sum_{i=1}^n f(x_i) \Delta x \][/tex]
Substituting our expressions for [tex]\( f(x_i) \)[/tex] and [tex]\(\Delta x\)[/tex]:
[tex]\[ \sum_{i=1}^n \left( 1 + i \frac{4}{n} \right) \sqrt{\left(1 + i \frac{4}{n} \right)^3 + 9} \cdot \frac{4}{n} \][/tex]
5. Express the Area as a Limit: Take the limit of the Riemann sum as the number of subintervals [tex]\( n \)[/tex] approaches infinity:
[tex]\[ A = \lim_{n \to \infty} \sum_{i=1}^n \left( 1 + i \frac{4}{n} \right) \sqrt{\left(1 + i \frac{4}{n} \right)^3 + 9} \cdot \frac{4}{n} \][/tex]
Thus, the expression for the area under the graph of [tex]\( f(x) \)[/tex] as a limit is:
[tex]\[ A = \lim_{n \to \infty} \sum_{i=1}^n \left( 1 + i \frac{4}{n} \right) \sqrt{\left(1 + i \frac{4}{n} \right)^3 + 9} \cdot \frac{4}{n} \][/tex]
1. Partition the Interval: Divide the interval [tex]\([1, 5]\)[/tex] into [tex]\( n \)[/tex] subintervals of equal width. The width [tex]\(\Delta x\)[/tex] of each subinterval is given by:
[tex]\[ \Delta x = \frac{5 - 1}{n} = \frac{4}{n} \][/tex]
2. Determine Right Endpoints: The right endpoint of the [tex]\( i \)[/tex]-th subinterval is:
[tex]\[ x_i = 1 + i \Delta x \][/tex]
where [tex]\( i \)[/tex] ranges from 1 to [tex]\( n \)[/tex].
3. Evaluate the Function at Right Endpoints: Evaluate the function [tex]\( f(x) = x \sqrt{x^3 + 9} \)[/tex] at the right endpoints [tex]\( x_i \)[/tex]:
[tex]\[ f(x_i) = \left( 1 + i \frac{4}{n} \right) \sqrt{\left(1 + i \frac{4}{n} \right)^3 + 9} \][/tex]
4. Set Up the Riemann Sum: The Riemann sum using right endpoints for the area under [tex]\( f(x) \)[/tex] from [tex]\( x = 1 \)[/tex] to [tex]\( x = 5 \)[/tex] is:
[tex]\[ \sum_{i=1}^n f(x_i) \Delta x \][/tex]
Substituting our expressions for [tex]\( f(x_i) \)[/tex] and [tex]\(\Delta x\)[/tex]:
[tex]\[ \sum_{i=1}^n \left( 1 + i \frac{4}{n} \right) \sqrt{\left(1 + i \frac{4}{n} \right)^3 + 9} \cdot \frac{4}{n} \][/tex]
5. Express the Area as a Limit: Take the limit of the Riemann sum as the number of subintervals [tex]\( n \)[/tex] approaches infinity:
[tex]\[ A = \lim_{n \to \infty} \sum_{i=1}^n \left( 1 + i \frac{4}{n} \right) \sqrt{\left(1 + i \frac{4}{n} \right)^3 + 9} \cdot \frac{4}{n} \][/tex]
Thus, the expression for the area under the graph of [tex]\( f(x) \)[/tex] as a limit is:
[tex]\[ A = \lim_{n \to \infty} \sum_{i=1}^n \left( 1 + i \frac{4}{n} \right) \sqrt{\left(1 + i \frac{4}{n} \right)^3 + 9} \cdot \frac{4}{n} \][/tex]
Thank you for contributing to our discussion. Don't forget to check back for new answers. Keep asking, answering, and sharing useful information. Thank you for visiting IDNLearn.com. We’re here to provide clear and concise answers, so visit us again soon.