Get detailed and reliable answers to your questions on IDNLearn.com. Find reliable solutions to your questions quickly and accurately with help from our dedicated community of experts.

The table gives the values of a function obtained from an experiment. Use the table to estimate [tex]\int_3^9 f(x) \, dx[/tex] using three equal subintervals and a right Riemann sum, left Riemann sum, and a midpoint sum.

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline
[tex]$x$[/tex] & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
\hline
[tex]$f(x)$[/tex] & -3.6 & -2.2 & -0.7 & 0.3 & 0.9 & 1.5 & 1.7 \\
\hline
\end{tabular}

(a) Estimate [tex]\int_3^9 f(x) \, dx[/tex] using three equal subintervals and right endpoints.
[tex]\[ R_3 = 3.8 \][/tex]

If the function is known to be an increasing function, can you say whether your estimate is less than or greater than the exact value of the integral?
- Less than
- Greater than
- One cannot say

(b) Estimate [tex]\int_3^9 f(x) \, dx[/tex] using three equal subintervals and left endpoints.
[tex]\[ L_3 = -6.2 \][/tex]


Sagot :

Sure, let's go through the process to estimate [tex]\(\int_3^9 f(x) \, dx\)[/tex] using different Riemann sums and a midpoint sum. Here's a detailed step-by-step solution.

Let's start by organizing the given data in a more readable format:

[tex]\[ \begin{array}{|c|c|c|c|c|c|c|c|} \hline x & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ \hline f(x) & -3.6 & -2.2 & -0.7 & 0.3 & 0.9 & 1.5 & 1.7 \\ \hline \end{array} \][/tex]

The interval [tex]\([3, 9]\)[/tex] is divided into three equal subintervals, each with a width of [tex]\(2\)[/tex]:

[tex]\[ \Delta x = \frac{9 - 3}{3} = 2 \][/tex]

### Part (a) - Right Riemann Sum

For the right Riemann sum, we take the right endpoints of each subinterval:

- For [tex]\([3, 5]\)[/tex], the right endpoint is [tex]\(5\)[/tex] ([tex]\(f(5) = -0.7\)[/tex])
- For [tex]\([5, 7]\)[/tex], the right endpoint is [tex]\(7\)[/tex] ([tex]\(f(7) = 0.9\)[/tex])
- For [tex]\([7, 9]\)[/tex], the right endpoint is [tex]\(9\)[/tex] ([tex]\(f(9) = 1.7\)[/tex])

So, the right Riemann sum [tex]\(R_3\)[/tex] is:

[tex]\[ R_3 = \Delta x \left[ f(5) + f(7) + f(9) \right] = 2 \left( -0.7 + 0.9 + 1.7 \right) = 2 \left( 1.9 \right) = 3.8 \][/tex]

Since the function is increasing, the right Riemann sum will be greater than the exact value of the integral.

### Part (b) - Left Riemann Sum

For the left Riemann sum, we take the left endpoints of each subinterval:

- For [tex]\([3, 5]\)[/tex], the left endpoint is [tex]\(3\)[/tex] ([tex]\(f(3) = -3.6\)[/tex])
- For [tex]\([5, 7]\)[/tex], the left endpoint is [tex]\(5\)[/tex] ([tex]\(f(5) = -0.7\)[/tex])
- For [tex]\([7, 9]\)[/tex], the left endpoint is [tex]\(7\)[/tex] ([tex]\(f(7) = 0.9\)[/tex])

So, the left Riemann sum [tex]\(L_3\)[/tex] is:

[tex]\[ L_3 = \Delta x \left[ f(3) + f(5) + f(7) \right] = 2 \left( -3.6 + (-0.7) + 0.9 \right) = 2 \left( -3.4 \right) = -6.8 \][/tex]

Since the function is increasing, the left Riemann sum will be less than the exact value of the integral.

### Part (c) - Midpoint Sum

For the midpoint sum, we typically use the midpoints of the subintervals. The midpoints and the corresponding function values are:

- For [tex]\([3, 5]\)[/tex], the midpoint is [tex]\(4\)[/tex] ([tex]\(f(4) = -2.2\)[/tex])
- For [tex]\([5, 7]\)[/tex], the midpoint is [tex]\(6\)[/tex] ([tex]\(f(6) = 0.3\)[/tex])
- For [tex]\([7, 9]\)[/tex], the midpoint is [tex]\(8\)[/tex] ([tex]\(f(8) = 1.5\)[/tex])

So, the midpoint sum [tex]\(M_3\)[/tex] is:

[tex]\[ M_3 = \Delta x \left[ f(4) + f(6) + f(8) \right] = 2 \left( -2.2 + 0.3 + 1.5 \right) = 2 \left( -0.4 \right) = -0.8 \][/tex]

Summarizing the results:

- Right Riemann sum [tex]\(R_3 = 3.8\)[/tex]
- Left Riemann sum [tex]\(L_3 = -6.8\)[/tex]
- Midpoint sum [tex]\(M_3 = -0.8\)[/tex]

With this setup, you have detailed estimates using different methods for the given integral.
Your engagement is important to us. Keep sharing your knowledge and experiences. Let's create a learning environment that is both enjoyable and beneficial. Your search for solutions ends at IDNLearn.com. Thank you for visiting, and we look forward to helping you again.