Get the best answers to your questions with the help of IDNLearn.com's experts. Our platform provides detailed and accurate responses from experts, helping you navigate any topic with confidence.

Enter the function [tex]\( f(x) \)[/tex], interval [tex]\([a, b]\)[/tex], and number of subintervals (rectangles) [tex]\( n \)[/tex] below. [tex]\( R_n \)[/tex] is the area sum for right endpoints and [tex]\( L_n \)[/tex] is the area sum for left endpoints. The example given below is for [tex]\( f(x)=5 \cos (x) \)[/tex], [tex]\([0, \pi / 2] \)[/tex], [tex]\( a=0 \)[/tex], [tex]\( b=\pi / 2 \)[/tex], and [tex]\( n=10 \)[/tex].

Example:
[tex]\[
\begin{aligned}
f(x) &= 5 \cos (x) \\
a &= 0 \\
b &= \frac{\pi}{2} \quad (b \approx 1.570796326) \\
n &= 10
\end{aligned}
\][/tex]

Formulas:
[tex]\[
R_n = \sum_{i=1}^n f\left(a + i \cdot \frac{b-a}{n}\right) \cdot \frac{b-a}{n}
\][/tex]

[tex]\[
L_n = \sum_{i=0}^{n-1} f\left(a + i \cdot \frac{b-a}{n}\right) \cdot \frac{b-a}{n}
\][/tex]

You can edit any or all of these.


Sagot :

Certainly! Let's work through this problem step-by-step. The task is to find the Riemann sums using right endpoints and left endpoints for the given function [tex]\( f(x) = 5 \cos x \)[/tex] over the interval [tex]\([a, b] = [0, \frac{\pi}{2}]\)[/tex] with [tex]\( n = 10 \)[/tex] subintervals.

### Step-by-Step Solution

1. Define the Function and Interval:
- [tex]\( f(x) = 5 \cos x \)[/tex]
- [tex]\( a = 0 \)[/tex]
- [tex]\( b = \frac{\pi}{2} \approx 1.570796326 \)[/tex]

2. Determine the Number of Subintervals:
- [tex]\( n = 10 \)[/tex]

3. Calculate the Width of Each Subinterval:
[tex]\[ \Delta x = \frac{b - a}{n} = \frac{\frac{\pi}{2} - 0}{10} = \frac{\pi}{20} \approx 0.15707963267948966 \][/tex]

4. Calculate the Area Sum for Right Endpoints ( [tex]\( R_n \)[/tex] ):
- The formula for the Riemann sum using right endpoints is:
[tex]\[ R_n = \sum_{i=1}^{n} f \left( a + i \cdot \Delta x \right) \cdot \Delta x \][/tex]
- Here, [tex]\( a + i \cdot \Delta x \)[/tex] gives the right-endpoint [tex]\( x \)[/tex]-coordinate for each subinterval.
- Substituting the values and summing up:
[tex]\[ R_n = f(0.15707963267948966) \Delta x + f(0.3141592653589793) \Delta x + \cdots + f(1.5707963267948966) \Delta x \][/tex]
- With the actual calculations, the result is:
[tex]\[ R_n \approx 4.597015850073062 \][/tex]

5. Calculate the Area Sum for Left Endpoints ( [tex]\( L_n \)[/tex] ):
- The formula for the Riemann sum using left endpoints is:
[tex]\[ L_n = \sum_{i=0}^{n-1} f \left( a + i \cdot \Delta x \right) \cdot \Delta x \][/tex]
- Here, [tex]\( a + i \cdot \Delta x \)[/tex] gives the left-endpoint [tex]\( x \)[/tex]-coordinate for each subinterval.
- Substituting the values and summing up:
[tex]\[ L_n = f(0) \Delta x + f(0.15707963267948966) \Delta x + \cdots + f(1.413716694115407) \Delta x \][/tex]
- With the actual calculations, the result is:
[tex]\[ L_n \approx 5.38241401347051 \][/tex]

### Summary of Results
- The width of each subinterval ([tex]\( \Delta x \)[/tex]) is approximately [tex]\( 0.15707963267948966 \)[/tex].
- The area sum for right endpoints ([tex]\( R_n \)[/tex]) is approximately [tex]\( 4.597015850073062 \)[/tex].
- The area sum for left endpoints ([tex]\( L_n \)[/tex]) is approximately [tex]\( 5.38241401347051 \)[/tex].

These results give us a good approximation of the integral of [tex]\( f(x) = 5 \cos x \)[/tex] over the interval [tex]\([0, \frac{\pi}{2}]\)[/tex] using both right and left Riemann sums with [tex]\( n = 10 \)[/tex] subintervals.