Get personalized and accurate responses to your questions with IDNLearn.com. Our Q&A platform offers reliable and thorough answers to ensure you have the information you need to succeed in any situation.
Sagot :
Certainly! Let's work through this problem step-by-step. The task is to find the Riemann sums using right endpoints and left endpoints for the given function [tex]\( f(x) = 5 \cos x \)[/tex] over the interval [tex]\([a, b] = [0, \frac{\pi}{2}]\)[/tex] with [tex]\( n = 10 \)[/tex] subintervals.
### Step-by-Step Solution
1. Define the Function and Interval:
- [tex]\( f(x) = 5 \cos x \)[/tex]
- [tex]\( a = 0 \)[/tex]
- [tex]\( b = \frac{\pi}{2} \approx 1.570796326 \)[/tex]
2. Determine the Number of Subintervals:
- [tex]\( n = 10 \)[/tex]
3. Calculate the Width of Each Subinterval:
[tex]\[ \Delta x = \frac{b - a}{n} = \frac{\frac{\pi}{2} - 0}{10} = \frac{\pi}{20} \approx 0.15707963267948966 \][/tex]
4. Calculate the Area Sum for Right Endpoints ( [tex]\( R_n \)[/tex] ):
- The formula for the Riemann sum using right endpoints is:
[tex]\[ R_n = \sum_{i=1}^{n} f \left( a + i \cdot \Delta x \right) \cdot \Delta x \][/tex]
- Here, [tex]\( a + i \cdot \Delta x \)[/tex] gives the right-endpoint [tex]\( x \)[/tex]-coordinate for each subinterval.
- Substituting the values and summing up:
[tex]\[ R_n = f(0.15707963267948966) \Delta x + f(0.3141592653589793) \Delta x + \cdots + f(1.5707963267948966) \Delta x \][/tex]
- With the actual calculations, the result is:
[tex]\[ R_n \approx 4.597015850073062 \][/tex]
5. Calculate the Area Sum for Left Endpoints ( [tex]\( L_n \)[/tex] ):
- The formula for the Riemann sum using left endpoints is:
[tex]\[ L_n = \sum_{i=0}^{n-1} f \left( a + i \cdot \Delta x \right) \cdot \Delta x \][/tex]
- Here, [tex]\( a + i \cdot \Delta x \)[/tex] gives the left-endpoint [tex]\( x \)[/tex]-coordinate for each subinterval.
- Substituting the values and summing up:
[tex]\[ L_n = f(0) \Delta x + f(0.15707963267948966) \Delta x + \cdots + f(1.413716694115407) \Delta x \][/tex]
- With the actual calculations, the result is:
[tex]\[ L_n \approx 5.38241401347051 \][/tex]
### Summary of Results
- The width of each subinterval ([tex]\( \Delta x \)[/tex]) is approximately [tex]\( 0.15707963267948966 \)[/tex].
- The area sum for right endpoints ([tex]\( R_n \)[/tex]) is approximately [tex]\( 4.597015850073062 \)[/tex].
- The area sum for left endpoints ([tex]\( L_n \)[/tex]) is approximately [tex]\( 5.38241401347051 \)[/tex].
These results give us a good approximation of the integral of [tex]\( f(x) = 5 \cos x \)[/tex] over the interval [tex]\([0, \frac{\pi}{2}]\)[/tex] using both right and left Riemann sums with [tex]\( n = 10 \)[/tex] subintervals.
### Step-by-Step Solution
1. Define the Function and Interval:
- [tex]\( f(x) = 5 \cos x \)[/tex]
- [tex]\( a = 0 \)[/tex]
- [tex]\( b = \frac{\pi}{2} \approx 1.570796326 \)[/tex]
2. Determine the Number of Subintervals:
- [tex]\( n = 10 \)[/tex]
3. Calculate the Width of Each Subinterval:
[tex]\[ \Delta x = \frac{b - a}{n} = \frac{\frac{\pi}{2} - 0}{10} = \frac{\pi}{20} \approx 0.15707963267948966 \][/tex]
4. Calculate the Area Sum for Right Endpoints ( [tex]\( R_n \)[/tex] ):
- The formula for the Riemann sum using right endpoints is:
[tex]\[ R_n = \sum_{i=1}^{n} f \left( a + i \cdot \Delta x \right) \cdot \Delta x \][/tex]
- Here, [tex]\( a + i \cdot \Delta x \)[/tex] gives the right-endpoint [tex]\( x \)[/tex]-coordinate for each subinterval.
- Substituting the values and summing up:
[tex]\[ R_n = f(0.15707963267948966) \Delta x + f(0.3141592653589793) \Delta x + \cdots + f(1.5707963267948966) \Delta x \][/tex]
- With the actual calculations, the result is:
[tex]\[ R_n \approx 4.597015850073062 \][/tex]
5. Calculate the Area Sum for Left Endpoints ( [tex]\( L_n \)[/tex] ):
- The formula for the Riemann sum using left endpoints is:
[tex]\[ L_n = \sum_{i=0}^{n-1} f \left( a + i \cdot \Delta x \right) \cdot \Delta x \][/tex]
- Here, [tex]\( a + i \cdot \Delta x \)[/tex] gives the left-endpoint [tex]\( x \)[/tex]-coordinate for each subinterval.
- Substituting the values and summing up:
[tex]\[ L_n = f(0) \Delta x + f(0.15707963267948966) \Delta x + \cdots + f(1.413716694115407) \Delta x \][/tex]
- With the actual calculations, the result is:
[tex]\[ L_n \approx 5.38241401347051 \][/tex]
### Summary of Results
- The width of each subinterval ([tex]\( \Delta x \)[/tex]) is approximately [tex]\( 0.15707963267948966 \)[/tex].
- The area sum for right endpoints ([tex]\( R_n \)[/tex]) is approximately [tex]\( 4.597015850073062 \)[/tex].
- The area sum for left endpoints ([tex]\( L_n \)[/tex]) is approximately [tex]\( 5.38241401347051 \)[/tex].
These results give us a good approximation of the integral of [tex]\( f(x) = 5 \cos x \)[/tex] over the interval [tex]\([0, \frac{\pi}{2}]\)[/tex] using both right and left Riemann sums with [tex]\( n = 10 \)[/tex] subintervals.
We greatly appreciate every question and answer you provide. Keep engaging and finding the best solutions. This community is the perfect place to learn and grow together. Thank you for choosing IDNLearn.com. We’re dedicated to providing clear answers, so visit us again for more solutions.