IDNLearn.com: Your trusted source for accurate and reliable answers. Ask your questions and receive comprehensive and trustworthy answers from our experienced community of professionals.
Sagot :
Sure, let's find the derivative of the function [tex]\( f(x) = 5 e^{8 x^5 + 4 x^3} \)[/tex] using the chain rule. We will proceed step by step.
### Step 1: Recognize the outer and inner functions
1. Outer function: [tex]\( g(u) = 5 e^u \)[/tex], where [tex]\( u \)[/tex] is a function of [tex]\( x \)[/tex]
2. Inner function: [tex]\( u(x) = 8 x^5 + 4 x^3 \)[/tex]
### Step 2: Differentiate the outer function with respect to the inner function
First, we differentiate the outer function [tex]\( g(u) \)[/tex] with respect to [tex]\( u \)[/tex]:
[tex]\[ g'(u) = 5 e^u \][/tex]
Since the derivative of [tex]\( e^u \)[/tex] with respect to [tex]\( u \)[/tex] is [tex]\( e^u \)[/tex], we have:
[tex]\[ \frac{d}{du} \left( 5 e^u \right) = 5 e^u \][/tex]
### Step 3: Differentiate the inner function with respect to [tex]\( x \)[/tex]
Next, we differentiate the inner function [tex]\( u(x) = 8 x^5 + 4 x^3 \)[/tex] with respect to [tex]\( x \)[/tex]:
[tex]\[ u'(x) = \frac{d}{dx} \left( 8 x^5 + 4 x^3 \right) \][/tex]
Applying the power rule to each term, we get:
[tex]\[ \frac{d}{dx} \left( 8 x^5 \right) = 40 x^4 \][/tex]
[tex]\[ \frac{d}{dx} \left( 4 x^3 \right) = 12 x^2 \][/tex]
So, the derivative of the inner function is:
[tex]\[ u'(x) = 40 x^4 + 12 x^2 \][/tex]
### Step 4: Apply the chain rule
The chain rule states that:
[tex]\[ f'(x) = g'(u) \cdot u'(x) \][/tex]
Substituting [tex]\( g'(u) \)[/tex] and [tex]\( u'(x) \)[/tex] into this formula, we get:
[tex]\[ f'(x) = 5 e^u \cdot (40 x^4 + 12 x^2) \][/tex]
### Step 5: Substitute back the inner function [tex]\( u \)[/tex]
Recall that the inner function [tex]\( u \)[/tex] is [tex]\( 8 x^5 + 4 x^3 \)[/tex]. Substitute [tex]\( u \)[/tex] back into the expression:
[tex]\[ f'(x) = 5 e^{8 x^5 + 4 x^3} \cdot (40 x^4 + 12 x^2) \][/tex]
### Final Answer
Thus, the derivative of [tex]\( f(x) \)[/tex] is:
[tex]\[ f'(x) = 5 \left( 40 x^4 + 12 x^2 \right) e^{8 x^5 + 4 x^3} \][/tex]
### Step 1: Recognize the outer and inner functions
1. Outer function: [tex]\( g(u) = 5 e^u \)[/tex], where [tex]\( u \)[/tex] is a function of [tex]\( x \)[/tex]
2. Inner function: [tex]\( u(x) = 8 x^5 + 4 x^3 \)[/tex]
### Step 2: Differentiate the outer function with respect to the inner function
First, we differentiate the outer function [tex]\( g(u) \)[/tex] with respect to [tex]\( u \)[/tex]:
[tex]\[ g'(u) = 5 e^u \][/tex]
Since the derivative of [tex]\( e^u \)[/tex] with respect to [tex]\( u \)[/tex] is [tex]\( e^u \)[/tex], we have:
[tex]\[ \frac{d}{du} \left( 5 e^u \right) = 5 e^u \][/tex]
### Step 3: Differentiate the inner function with respect to [tex]\( x \)[/tex]
Next, we differentiate the inner function [tex]\( u(x) = 8 x^5 + 4 x^3 \)[/tex] with respect to [tex]\( x \)[/tex]:
[tex]\[ u'(x) = \frac{d}{dx} \left( 8 x^5 + 4 x^3 \right) \][/tex]
Applying the power rule to each term, we get:
[tex]\[ \frac{d}{dx} \left( 8 x^5 \right) = 40 x^4 \][/tex]
[tex]\[ \frac{d}{dx} \left( 4 x^3 \right) = 12 x^2 \][/tex]
So, the derivative of the inner function is:
[tex]\[ u'(x) = 40 x^4 + 12 x^2 \][/tex]
### Step 4: Apply the chain rule
The chain rule states that:
[tex]\[ f'(x) = g'(u) \cdot u'(x) \][/tex]
Substituting [tex]\( g'(u) \)[/tex] and [tex]\( u'(x) \)[/tex] into this formula, we get:
[tex]\[ f'(x) = 5 e^u \cdot (40 x^4 + 12 x^2) \][/tex]
### Step 5: Substitute back the inner function [tex]\( u \)[/tex]
Recall that the inner function [tex]\( u \)[/tex] is [tex]\( 8 x^5 + 4 x^3 \)[/tex]. Substitute [tex]\( u \)[/tex] back into the expression:
[tex]\[ f'(x) = 5 e^{8 x^5 + 4 x^3} \cdot (40 x^4 + 12 x^2) \][/tex]
### Final Answer
Thus, the derivative of [tex]\( f(x) \)[/tex] is:
[tex]\[ f'(x) = 5 \left( 40 x^4 + 12 x^2 \right) e^{8 x^5 + 4 x^3} \][/tex]
Thank you for contributing to our discussion. Don't forget to check back for new answers. Keep asking, answering, and sharing useful information. For clear and precise answers, choose IDNLearn.com. Thanks for stopping by, and come back soon for more valuable insights.