IDNLearn.com makes it easy to find precise answers to your specific questions. Receive prompt and accurate responses to your questions from our community of knowledgeable professionals ready to assist you at any time.
Sagot :
Given the position function [tex]\( s = f(t) = 5t^3 + 4t + 9 \)[/tex]:
(a) To find the velocity [tex]\( v(t) \)[/tex], we need to take the derivative of the position function with respect to time [tex]\( t \)[/tex]. The velocity function is given by:
[tex]\[ v(t) = \frac{ds}{dt} = \frac{d}{dt}(5t^3 + 4t + 9) \][/tex]
Using the power rule for differentiation ([tex]\( \frac{d}{dt} (t^n) = n t^{n-1} \)[/tex]):
[tex]\[ v(t) = 3 \cdot 5t^2 + 4 \cdot 1 + 0 = 15t^2 + 4 \][/tex]
Therefore, the velocity at time [tex]\( t \)[/tex] is:
[tex]\[ v(t) = 15t^2 + 4 \quad \frac{m}{s} \][/tex]
(b) To find the velocity at [tex]\( t = 3 \)[/tex] seconds, we substitute [tex]\( t = 3 \)[/tex] into the velocity function:
[tex]\[ v(3) = 15(3)^2 + 4 = 15 \cdot 9 + 4 = 135 + 4 = 139 \][/tex]
Hence, the velocity at [tex]\( t = 3 \)[/tex] seconds is:
[tex]\[ 139 \quad \frac{m}{s} \][/tex]
(c) To find the acceleration [tex]\( a(t) \)[/tex], we need to take the derivative of the velocity function with respect to time [tex]\( t \)[/tex]. The acceleration function is given by:
[tex]\[ a(t) = \frac{dv}{dt} = \frac{d}{dt}(15t^2 + 4) \][/tex]
Again, using the power rule for differentiation:
[tex]\[ a(t) = 2 \cdot 15t + 0 = 30t \][/tex]
Therefore, the acceleration at time [tex]\( t \)[/tex] is:
[tex]\[ a(t) = 30t \quad \frac{m}{s^2} \][/tex]
(d) To find the acceleration at [tex]\( t = 3 \)[/tex] seconds, we substitute [tex]\( t = 3 \)[/tex] into the acceleration function:
[tex]\[ a(3) = 30 \cdot 3 = 90 \][/tex]
Hence, the acceleration at [tex]\( t = 3 \)[/tex] seconds is:
[tex]\[ 90 \quad \frac{m}{s^2} \][/tex]
In summary:
(a) [tex]\( v(t) = 15t^2 + 4 \ \frac{m}{s} \)[/tex]
(b) [tex]\( v(3) = 139 \ \frac{m}{s} \)[/tex]
(c) [tex]\( a(t) = 30t \ \frac{m}{s^2} \)[/tex]
(d) [tex]\( a(3) = 90 \ \frac{m}{s^2} \)[/tex]
(a) To find the velocity [tex]\( v(t) \)[/tex], we need to take the derivative of the position function with respect to time [tex]\( t \)[/tex]. The velocity function is given by:
[tex]\[ v(t) = \frac{ds}{dt} = \frac{d}{dt}(5t^3 + 4t + 9) \][/tex]
Using the power rule for differentiation ([tex]\( \frac{d}{dt} (t^n) = n t^{n-1} \)[/tex]):
[tex]\[ v(t) = 3 \cdot 5t^2 + 4 \cdot 1 + 0 = 15t^2 + 4 \][/tex]
Therefore, the velocity at time [tex]\( t \)[/tex] is:
[tex]\[ v(t) = 15t^2 + 4 \quad \frac{m}{s} \][/tex]
(b) To find the velocity at [tex]\( t = 3 \)[/tex] seconds, we substitute [tex]\( t = 3 \)[/tex] into the velocity function:
[tex]\[ v(3) = 15(3)^2 + 4 = 15 \cdot 9 + 4 = 135 + 4 = 139 \][/tex]
Hence, the velocity at [tex]\( t = 3 \)[/tex] seconds is:
[tex]\[ 139 \quad \frac{m}{s} \][/tex]
(c) To find the acceleration [tex]\( a(t) \)[/tex], we need to take the derivative of the velocity function with respect to time [tex]\( t \)[/tex]. The acceleration function is given by:
[tex]\[ a(t) = \frac{dv}{dt} = \frac{d}{dt}(15t^2 + 4) \][/tex]
Again, using the power rule for differentiation:
[tex]\[ a(t) = 2 \cdot 15t + 0 = 30t \][/tex]
Therefore, the acceleration at time [tex]\( t \)[/tex] is:
[tex]\[ a(t) = 30t \quad \frac{m}{s^2} \][/tex]
(d) To find the acceleration at [tex]\( t = 3 \)[/tex] seconds, we substitute [tex]\( t = 3 \)[/tex] into the acceleration function:
[tex]\[ a(3) = 30 \cdot 3 = 90 \][/tex]
Hence, the acceleration at [tex]\( t = 3 \)[/tex] seconds is:
[tex]\[ 90 \quad \frac{m}{s^2} \][/tex]
In summary:
(a) [tex]\( v(t) = 15t^2 + 4 \ \frac{m}{s} \)[/tex]
(b) [tex]\( v(3) = 139 \ \frac{m}{s} \)[/tex]
(c) [tex]\( a(t) = 30t \ \frac{m}{s^2} \)[/tex]
(d) [tex]\( a(3) = 90 \ \frac{m}{s^2} \)[/tex]
Thank you for being part of this discussion. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. Thank you for visiting IDNLearn.com. We’re here to provide dependable answers, so visit us again soon.