IDNLearn.com provides a user-friendly platform for finding and sharing knowledge. Ask any question and receive accurate, in-depth responses from our dedicated team of experts.
Sagot :
Sure, let's analyze the function [tex]\( f(x) = \frac{x^4 - 32x^2}{9} \)[/tex] step by step, using calculus:
### (a) First Derivative
To find the first derivative of [tex]\( f(x) \)[/tex], we use the power rule:
[tex]\[ f'(x) = \frac{d}{dx}\left( \frac{x^4 - 32x^2}{9} \right) \][/tex]
[tex]\[ f'(x) = \frac{4x^3 - 64x}{9} \][/tex]
### (b) Second Derivative
To find the second derivative of [tex]\( f(x) \)[/tex], we differentiate [tex]\( f'(x) \)[/tex]:
[tex]\[ f''(x) = \frac{d}{dx}\left( \frac{4x^3 - 64x}{9} \right) \][/tex]
[tex]\[ f''(x) = \frac{4x^2 - 64}{3} \][/tex]
### (c) Interval of Increasing
To find where the function is increasing, we solve [tex]\( f'(x) > 0 \)[/tex]:
[tex]\[ \frac{4x^3 - 64x}{9} > 0 \][/tex]
Factoring the numerator:
[tex]\[ \frac{4x(x^2 - 16)}{9} > 0 \][/tex]
Further factoring:
[tex]\[ \frac{4x(x - 4)(x + 4)}{9} > 0 \][/tex]
The critical points are [tex]\( x = -4, 0, 4 \)[/tex]. Using test intervals around these points, we find:
- The function is increasing on the intervals [tex]\( (-4, 0) \cup (4, \infty) \)[/tex].
### (d) Interval of Decreasing
To find where the function is decreasing, we solve [tex]\( f'(x) < 0 \)[/tex]:
[tex]\[ \frac{4x(x - 4)(x + 4)}{9} < 0 \][/tex]
Testing the intervals around the critical points [tex]\( x = -4, 0, 4 \)[/tex], we determine:
- The function is decreasing on the intervals [tex]\( (-\infty, -4) \cup (0, 4) \)[/tex].
### (e) Interval of Concave Downward
To find where the function is concave downward, we solve [tex]\( f''(x) < 0 \)[/tex]:
[tex]\[ \frac{4x^2 - 64}{3} < 0 \][/tex]
Simplifying:
[tex]\[ \frac{4(x^2 - 16)}{3} < 0 \][/tex]
Factor further:
[tex]\[ \frac{4(x - 4 \sqrt{3}/3)(x + 4 \sqrt{3}/3)}{3} < 0 \][/tex]
The critical points are [tex]\( x = \pm 4 \sqrt{3}/3 \)[/tex]. Testing the intervals around these points, we find:
- The function is concave downward on the interval [tex]\( -4 \sqrt{3}/3 < x < 4 \sqrt{3}/3 \)[/tex].
### (f) Interval of Concave Upward
To find where the function is concave upward, we solve [tex]\( f''(x) > 0 \)[/tex]:
[tex]\[ \frac{4x^2 - 64}{3} > 0 \][/tex]
Simplifying:
[tex]\[ \frac{4(x^2 - 16)}{3} > 0 \][/tex]
Factor further:
[tex]\[ \frac{4(x - 4 \sqrt{3}/3)(x + 4 \sqrt{3}/3)}{3} > 0 \][/tex]
Testing the intervals around the critical points [tex]\( x = \pm 4 \sqrt{3}/3 \)[/tex], we find:
- The function is concave upward on the intervals [tex]\( (-\infty, -4 \sqrt{3}/3) \cup (4 \sqrt{3}/3, \infty) \)[/tex].
To summarize, the intervals for each behavior of the function are given as:
(c) Interval of Increasing: [tex]\( (-4, 0) \cup (4, \infty) \)[/tex]
(d) Interval of Decreasing: [tex]\( (-\infty, -4) \cup (0, 4) \)[/tex]
(e) Interval of Concave Downward: [tex]\( -\infty < x < -4 \sqrt{3}/3 \cup 4 \sqrt{3}/3 < x < \infty \)[/tex]
(f) Interval of Concave Upward: [tex]\( (-\infty, -4 \sqrt{3}/3) \cup (4 \sqrt{3}/3, \infty) \)[/tex]
These intervals help us understand where the function is increasing, decreasing, concave upward, and concave downward.
### (a) First Derivative
To find the first derivative of [tex]\( f(x) \)[/tex], we use the power rule:
[tex]\[ f'(x) = \frac{d}{dx}\left( \frac{x^4 - 32x^2}{9} \right) \][/tex]
[tex]\[ f'(x) = \frac{4x^3 - 64x}{9} \][/tex]
### (b) Second Derivative
To find the second derivative of [tex]\( f(x) \)[/tex], we differentiate [tex]\( f'(x) \)[/tex]:
[tex]\[ f''(x) = \frac{d}{dx}\left( \frac{4x^3 - 64x}{9} \right) \][/tex]
[tex]\[ f''(x) = \frac{4x^2 - 64}{3} \][/tex]
### (c) Interval of Increasing
To find where the function is increasing, we solve [tex]\( f'(x) > 0 \)[/tex]:
[tex]\[ \frac{4x^3 - 64x}{9} > 0 \][/tex]
Factoring the numerator:
[tex]\[ \frac{4x(x^2 - 16)}{9} > 0 \][/tex]
Further factoring:
[tex]\[ \frac{4x(x - 4)(x + 4)}{9} > 0 \][/tex]
The critical points are [tex]\( x = -4, 0, 4 \)[/tex]. Using test intervals around these points, we find:
- The function is increasing on the intervals [tex]\( (-4, 0) \cup (4, \infty) \)[/tex].
### (d) Interval of Decreasing
To find where the function is decreasing, we solve [tex]\( f'(x) < 0 \)[/tex]:
[tex]\[ \frac{4x(x - 4)(x + 4)}{9} < 0 \][/tex]
Testing the intervals around the critical points [tex]\( x = -4, 0, 4 \)[/tex], we determine:
- The function is decreasing on the intervals [tex]\( (-\infty, -4) \cup (0, 4) \)[/tex].
### (e) Interval of Concave Downward
To find where the function is concave downward, we solve [tex]\( f''(x) < 0 \)[/tex]:
[tex]\[ \frac{4x^2 - 64}{3} < 0 \][/tex]
Simplifying:
[tex]\[ \frac{4(x^2 - 16)}{3} < 0 \][/tex]
Factor further:
[tex]\[ \frac{4(x - 4 \sqrt{3}/3)(x + 4 \sqrt{3}/3)}{3} < 0 \][/tex]
The critical points are [tex]\( x = \pm 4 \sqrt{3}/3 \)[/tex]. Testing the intervals around these points, we find:
- The function is concave downward on the interval [tex]\( -4 \sqrt{3}/3 < x < 4 \sqrt{3}/3 \)[/tex].
### (f) Interval of Concave Upward
To find where the function is concave upward, we solve [tex]\( f''(x) > 0 \)[/tex]:
[tex]\[ \frac{4x^2 - 64}{3} > 0 \][/tex]
Simplifying:
[tex]\[ \frac{4(x^2 - 16)}{3} > 0 \][/tex]
Factor further:
[tex]\[ \frac{4(x - 4 \sqrt{3}/3)(x + 4 \sqrt{3}/3)}{3} > 0 \][/tex]
Testing the intervals around the critical points [tex]\( x = \pm 4 \sqrt{3}/3 \)[/tex], we find:
- The function is concave upward on the intervals [tex]\( (-\infty, -4 \sqrt{3}/3) \cup (4 \sqrt{3}/3, \infty) \)[/tex].
To summarize, the intervals for each behavior of the function are given as:
(c) Interval of Increasing: [tex]\( (-4, 0) \cup (4, \infty) \)[/tex]
(d) Interval of Decreasing: [tex]\( (-\infty, -4) \cup (0, 4) \)[/tex]
(e) Interval of Concave Downward: [tex]\( -\infty < x < -4 \sqrt{3}/3 \cup 4 \sqrt{3}/3 < x < \infty \)[/tex]
(f) Interval of Concave Upward: [tex]\( (-\infty, -4 \sqrt{3}/3) \cup (4 \sqrt{3}/3, \infty) \)[/tex]
These intervals help us understand where the function is increasing, decreasing, concave upward, and concave downward.
We value your presence here. Keep sharing knowledge and helping others find the answers they need. This community is the perfect place to learn together. Find clear and concise answers at IDNLearn.com. Thanks for stopping by, and come back for more dependable solutions.