IDNLearn.com provides a collaborative platform for sharing and gaining knowledge. Get prompt and accurate answers to your questions from our experts who are always ready to help.
Sagot :
(a) To find the relevant sums based on the given data:
We have:
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 0 & 95 \\ 10 & 81 \\ 18 & 70 \\ 22 & 50 \\ 28 & 73 \\ 20 & 94 \\ 12 & 90 \\ 15 & 62 \\ \hline \end{array} \][/tex]
Note: The value for [tex]\(y\)[/tex] when [tex]\(x=25\)[/tex] is missing.
First, let’s sum up the given [tex]\(x\)[/tex] and [tex]\(y\)[/tex] values.
[tex]\[ \sum x = 0 + 10 + 18 + 22 + 28 + 20 + 12 + 15 = 125 \][/tex]
[tex]\[ \sum y = 95 + 81 + 70 + 50 + 73 + 94 + 90 + 62 = 615 \][/tex]
Next, we calculate the sum of the squares of [tex]\(y\)[/tex] values:
[tex]\[ \sum y^2 = 95^2 + 81^2 + 70^2 + 50^2 + 73^2 + 94^2 + 90^2 + 62^2 = 9025 + 6561 + 4900 + 2500 + 5329 + 8836 + 8100 + 3844 = 49095 \][/tex]
Now, we calculate the sum of the products of [tex]\(x\)[/tex] and [tex]\(y\)[/tex] values:
[tex]\[ \sum xy = (0 \cdot 95) + (10 \cdot 81) + (18 \cdot 70) + (22 \cdot 50) + (28 \cdot 73) + (20 \cdot 94) + (12 \cdot 90) + (15 \cdot 62) = 0 + 810 + 1260 + 1100 + 2044 + 1880 + 1080 + 930 = 9104 \][/tex]
Lastly, we calculate the sum of the squares of [tex]\(x\)[/tex] values:
[tex]\[ \sum x^2 = 0^2 + 10^2 + 18^2 + 22^2 + 28^2 + 20^2 + 12^2 + 15^2 = 0 + 100 + 324 + 484 + 784 + 400 + 144 + 225 = 2461 \][/tex]
Thus the sums are:
[tex]\[ \sum x = 125, \quad \sum y = 615, \quad \sum y^2 = 49095, \quad \sum xy = 9104, \quad \sum x^2 = 2461 \][/tex]
(b) To find the correlation coefficient (r):
Using the formula:
[tex]\[ r = \frac{n \sum xy - \sum x \sum y}{\sqrt{n \sum x^2 - (\sum x)^2} \sqrt{n \sum y^2 - (\sum y)^2}} \][/tex]
Where [tex]\(n = 8\)[/tex] (excluding the entry where [tex]\(y\)[/tex] is missing):
[tex]\[ r = \frac{8 \times 9104 - 125 \times 615}{\sqrt{8 \times 2461 - 125^2} \sqrt{8 \times 49095 - 615^2}} = \frac{72832 - 76875}{\sqrt{19688 - 15625} \sqrt{392760 - 378225}} = \frac{-4043}{\sqrt{4063} \sqrt{14535}} = \frac{-4043}{\sqrt{59079855}} = -0.526 \][/tex]
(c) To find the standard deviations of [tex]\(x\)[/tex] and [tex]\(y\)[/tex]:
Standard deviation formula for [tex]\(x\)[/tex] and [tex]\(y\)[/tex]:
[tex]\[ s_x = \sqrt{\frac{\sum x^2 - \frac{(\sum x)^2}{n}}{n-1}} = \sqrt{\frac{2461 - \frac{125^2}{8}}{7}} = \sqrt{\frac{2461 - 1953.125}{7}} = \sqrt{\frac{507.875}{7}} = 8.518 \][/tex]
[tex]\[ s_y = \sqrt{\frac{\sum y^2 - \frac{(\sum y)^2}{n}}{n-1}} = \sqrt{\frac{49095 - \frac{615^2}{8}}{7}} = \sqrt{\frac{49095 - 47265.625}{7}} = \sqrt{\frac{1829.375}{7}} = 16.111 \][/tex]
(d) To find the slope [tex]\(a\)[/tex] of the best-fit line:
Using the formula:
[tex]\[ a = r \frac{s_y}{s_x} = -0.526 \times \frac{16.111}{8.518} = -0.995 \][/tex]
(e) To find the y-intercept [tex]\(b\)[/tex] of the best-fit line:
Using the formula:
[tex]\[ b = \frac{\sum y}{n} - a \frac{\sum x}{n} = \frac{615}{8} - (-0.995) \times \frac{125}{8} = 76.875 + 15.548 = 92.423 \][/tex]
Therefore, the values are filled in correctly as follows:
- [tex]\(\sum x = 125\)[/tex]
- [tex]\(\sum y = 615\)[/tex]
- [tex]\(\sum y^2 = 49095\)[/tex]
- [tex]\(\sum xy = 9104\)[/tex]
- [tex]\(\sum x^2 = 2461\)[/tex]
- The correlation coefficient [tex]\( r = -0.526\)[/tex]
- The standard deviations [tex]\( s_x = 8.518\)[/tex] and [tex]\( s_y = 16.111\)[/tex]
- The slope of the best fit line [tex]\(a = -0.995\)[/tex]
- The y-intercept of the best fit line is [tex]\(b = 92.423\)[/tex]
We have:
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 0 & 95 \\ 10 & 81 \\ 18 & 70 \\ 22 & 50 \\ 28 & 73 \\ 20 & 94 \\ 12 & 90 \\ 15 & 62 \\ \hline \end{array} \][/tex]
Note: The value for [tex]\(y\)[/tex] when [tex]\(x=25\)[/tex] is missing.
First, let’s sum up the given [tex]\(x\)[/tex] and [tex]\(y\)[/tex] values.
[tex]\[ \sum x = 0 + 10 + 18 + 22 + 28 + 20 + 12 + 15 = 125 \][/tex]
[tex]\[ \sum y = 95 + 81 + 70 + 50 + 73 + 94 + 90 + 62 = 615 \][/tex]
Next, we calculate the sum of the squares of [tex]\(y\)[/tex] values:
[tex]\[ \sum y^2 = 95^2 + 81^2 + 70^2 + 50^2 + 73^2 + 94^2 + 90^2 + 62^2 = 9025 + 6561 + 4900 + 2500 + 5329 + 8836 + 8100 + 3844 = 49095 \][/tex]
Now, we calculate the sum of the products of [tex]\(x\)[/tex] and [tex]\(y\)[/tex] values:
[tex]\[ \sum xy = (0 \cdot 95) + (10 \cdot 81) + (18 \cdot 70) + (22 \cdot 50) + (28 \cdot 73) + (20 \cdot 94) + (12 \cdot 90) + (15 \cdot 62) = 0 + 810 + 1260 + 1100 + 2044 + 1880 + 1080 + 930 = 9104 \][/tex]
Lastly, we calculate the sum of the squares of [tex]\(x\)[/tex] values:
[tex]\[ \sum x^2 = 0^2 + 10^2 + 18^2 + 22^2 + 28^2 + 20^2 + 12^2 + 15^2 = 0 + 100 + 324 + 484 + 784 + 400 + 144 + 225 = 2461 \][/tex]
Thus the sums are:
[tex]\[ \sum x = 125, \quad \sum y = 615, \quad \sum y^2 = 49095, \quad \sum xy = 9104, \quad \sum x^2 = 2461 \][/tex]
(b) To find the correlation coefficient (r):
Using the formula:
[tex]\[ r = \frac{n \sum xy - \sum x \sum y}{\sqrt{n \sum x^2 - (\sum x)^2} \sqrt{n \sum y^2 - (\sum y)^2}} \][/tex]
Where [tex]\(n = 8\)[/tex] (excluding the entry where [tex]\(y\)[/tex] is missing):
[tex]\[ r = \frac{8 \times 9104 - 125 \times 615}{\sqrt{8 \times 2461 - 125^2} \sqrt{8 \times 49095 - 615^2}} = \frac{72832 - 76875}{\sqrt{19688 - 15625} \sqrt{392760 - 378225}} = \frac{-4043}{\sqrt{4063} \sqrt{14535}} = \frac{-4043}{\sqrt{59079855}} = -0.526 \][/tex]
(c) To find the standard deviations of [tex]\(x\)[/tex] and [tex]\(y\)[/tex]:
Standard deviation formula for [tex]\(x\)[/tex] and [tex]\(y\)[/tex]:
[tex]\[ s_x = \sqrt{\frac{\sum x^2 - \frac{(\sum x)^2}{n}}{n-1}} = \sqrt{\frac{2461 - \frac{125^2}{8}}{7}} = \sqrt{\frac{2461 - 1953.125}{7}} = \sqrt{\frac{507.875}{7}} = 8.518 \][/tex]
[tex]\[ s_y = \sqrt{\frac{\sum y^2 - \frac{(\sum y)^2}{n}}{n-1}} = \sqrt{\frac{49095 - \frac{615^2}{8}}{7}} = \sqrt{\frac{49095 - 47265.625}{7}} = \sqrt{\frac{1829.375}{7}} = 16.111 \][/tex]
(d) To find the slope [tex]\(a\)[/tex] of the best-fit line:
Using the formula:
[tex]\[ a = r \frac{s_y}{s_x} = -0.526 \times \frac{16.111}{8.518} = -0.995 \][/tex]
(e) To find the y-intercept [tex]\(b\)[/tex] of the best-fit line:
Using the formula:
[tex]\[ b = \frac{\sum y}{n} - a \frac{\sum x}{n} = \frac{615}{8} - (-0.995) \times \frac{125}{8} = 76.875 + 15.548 = 92.423 \][/tex]
Therefore, the values are filled in correctly as follows:
- [tex]\(\sum x = 125\)[/tex]
- [tex]\(\sum y = 615\)[/tex]
- [tex]\(\sum y^2 = 49095\)[/tex]
- [tex]\(\sum xy = 9104\)[/tex]
- [tex]\(\sum x^2 = 2461\)[/tex]
- The correlation coefficient [tex]\( r = -0.526\)[/tex]
- The standard deviations [tex]\( s_x = 8.518\)[/tex] and [tex]\( s_y = 16.111\)[/tex]
- The slope of the best fit line [tex]\(a = -0.995\)[/tex]
- The y-intercept of the best fit line is [tex]\(b = 92.423\)[/tex]
Thank you for using this platform to share and learn. Keep asking and answering. We appreciate every contribution you make. For precise answers, trust IDNLearn.com. Thank you for visiting, and we look forward to helping you again soon.