Find solutions to your questions with the help of IDNLearn.com's expert community. Get the information you need from our community of experts who provide accurate and comprehensive answers to all your questions.
Sagot :
Sure, let's go through each part step by step using logarithmic properties.
### (i) Simplify Using Logarithmic Properties
Given:
[tex]\[ \log_6 \left(\frac{216^x}{1296^x}\right) \log_x 6 \][/tex]
We start by simplifying the expression inside the logarithm:
- Notice 216 and 1296 can be written in terms of 6:
- [tex]\( 216 = 6^3 \)[/tex]
- [tex]\( 1296 = 6^4 \)[/tex]
Rewrite the fraction:
[tex]\[ \frac{216^x}{1296^x} = \frac{(6^3)^x}{(6^4)^x} = \frac{6^{3x}}{6^{4x}} = 6^{3x-4x} = 6^{-x} \][/tex]
Now the original expression becomes:
[tex]\[ \log_6 (6^{-x}) \log_x 6 \][/tex]
Using the property of logarithms [tex]\(\log_b (b^a) = a\)[/tex]:
[tex]\[ \log_6 (6^{-x}) = -x \][/tex]
So we have:
[tex]\[ -x \log_x 6 \][/tex]
Thus, the simplified form is:
[tex]\[ -x \log_x 6 \][/tex]
### (ii) Condense the Complex Logarithm into a Single Term
Given:
[tex]\[ \log (x+1)^2 + \log (2x-1)^3 - \log (x)^2 - \log (2x-1)^4 + 6\log (x+1) \][/tex]
Using the properties of logarithms:
1. Combine logarithms with the same base:
[tex]\[ \log (x+1)^2 + 6 \log (x+1) = \log (x+1)^{2+6} = \log (x+1)^8 \][/tex]
[tex]\[ \log (2x-1)^3 - \log (2x-1)^4 = \log \left(\frac{(2x-1)^3}{(2x-1)^4}\right) = \log (2x-1)^{-1} \][/tex]
[tex]\[ -\log (x)^2 = \log (x)^{-2} \][/tex]
Combine these:
[tex]\[ \log (x+1)^8 + \log (2x-1)^{-1} + \log (x)^{-2} \][/tex]
Using the product property [tex]\( \log A + \log B = \log (A \cdot B) \)[/tex]:
[tex]\[ \log \left((x+1)^8 \cdot (2x-1)^{-1} \cdot (x)^{-2}\right) \][/tex]
Thus, the condensed form is:
[tex]\[ \log \left( \frac{(x+1)^8}{(2x-1) \cdot x^2} \right) \][/tex]
### (iii) Solve: [tex]\( 10 e^{2x-3} = 15 e^{5x-7} \)[/tex]
First, divide both sides by 10:
[tex]\[ e^{2x-3} = 1.5 e^{5x-7} \][/tex]
Take the natural logarithm (ln) of both sides:
[tex]\[ \ln(e^{2x-3}) = \ln(1.5e^{5x-7}) \][/tex]
Using the property [tex]\(\ln(e^a) = a\)[/tex] and [tex]\(\ln(ab) = \ln(a) + \ln(b)\)[/tex]:
[tex]\[ 2x - 3 = \ln(1.5) + \ln(e^{5x-7}) \][/tex]
Further simplifying gives:
[tex]\[ 2x - 3 = \ln(1.5) + 5x - 7 \][/tex]
Move terms involving [tex]\( x \)[/tex] to one side and constants to the other:
[tex]\[ 2x - 5x = \ln(1.5) - 7 + 3 \][/tex]
[tex]\[ -3x = \ln(1.5) - 4 \][/tex]
Solve for [tex]\( x \)[/tex]:
[tex]\[ x = \frac{4 - \ln(1.5)}{3} \][/tex]
Thus, the numerical value for [tex]\( x \)[/tex] is approximately:
[tex]\[ x \approx 1.1981782972972785 \][/tex]
So, the results are:
[tex]\[ \text{(i)} \; -x \log_x 6 \\ \text{(ii)} \; \log \left( \frac{(x+1)^8}{(2x-1) \cdot x^2} \right) \\ \text{(iii)} \; x \approx 1.1981782972972785 \][/tex]
### (i) Simplify Using Logarithmic Properties
Given:
[tex]\[ \log_6 \left(\frac{216^x}{1296^x}\right) \log_x 6 \][/tex]
We start by simplifying the expression inside the logarithm:
- Notice 216 and 1296 can be written in terms of 6:
- [tex]\( 216 = 6^3 \)[/tex]
- [tex]\( 1296 = 6^4 \)[/tex]
Rewrite the fraction:
[tex]\[ \frac{216^x}{1296^x} = \frac{(6^3)^x}{(6^4)^x} = \frac{6^{3x}}{6^{4x}} = 6^{3x-4x} = 6^{-x} \][/tex]
Now the original expression becomes:
[tex]\[ \log_6 (6^{-x}) \log_x 6 \][/tex]
Using the property of logarithms [tex]\(\log_b (b^a) = a\)[/tex]:
[tex]\[ \log_6 (6^{-x}) = -x \][/tex]
So we have:
[tex]\[ -x \log_x 6 \][/tex]
Thus, the simplified form is:
[tex]\[ -x \log_x 6 \][/tex]
### (ii) Condense the Complex Logarithm into a Single Term
Given:
[tex]\[ \log (x+1)^2 + \log (2x-1)^3 - \log (x)^2 - \log (2x-1)^4 + 6\log (x+1) \][/tex]
Using the properties of logarithms:
1. Combine logarithms with the same base:
[tex]\[ \log (x+1)^2 + 6 \log (x+1) = \log (x+1)^{2+6} = \log (x+1)^8 \][/tex]
[tex]\[ \log (2x-1)^3 - \log (2x-1)^4 = \log \left(\frac{(2x-1)^3}{(2x-1)^4}\right) = \log (2x-1)^{-1} \][/tex]
[tex]\[ -\log (x)^2 = \log (x)^{-2} \][/tex]
Combine these:
[tex]\[ \log (x+1)^8 + \log (2x-1)^{-1} + \log (x)^{-2} \][/tex]
Using the product property [tex]\( \log A + \log B = \log (A \cdot B) \)[/tex]:
[tex]\[ \log \left((x+1)^8 \cdot (2x-1)^{-1} \cdot (x)^{-2}\right) \][/tex]
Thus, the condensed form is:
[tex]\[ \log \left( \frac{(x+1)^8}{(2x-1) \cdot x^2} \right) \][/tex]
### (iii) Solve: [tex]\( 10 e^{2x-3} = 15 e^{5x-7} \)[/tex]
First, divide both sides by 10:
[tex]\[ e^{2x-3} = 1.5 e^{5x-7} \][/tex]
Take the natural logarithm (ln) of both sides:
[tex]\[ \ln(e^{2x-3}) = \ln(1.5e^{5x-7}) \][/tex]
Using the property [tex]\(\ln(e^a) = a\)[/tex] and [tex]\(\ln(ab) = \ln(a) + \ln(b)\)[/tex]:
[tex]\[ 2x - 3 = \ln(1.5) + \ln(e^{5x-7}) \][/tex]
Further simplifying gives:
[tex]\[ 2x - 3 = \ln(1.5) + 5x - 7 \][/tex]
Move terms involving [tex]\( x \)[/tex] to one side and constants to the other:
[tex]\[ 2x - 5x = \ln(1.5) - 7 + 3 \][/tex]
[tex]\[ -3x = \ln(1.5) - 4 \][/tex]
Solve for [tex]\( x \)[/tex]:
[tex]\[ x = \frac{4 - \ln(1.5)}{3} \][/tex]
Thus, the numerical value for [tex]\( x \)[/tex] is approximately:
[tex]\[ x \approx 1.1981782972972785 \][/tex]
So, the results are:
[tex]\[ \text{(i)} \; -x \log_x 6 \\ \text{(ii)} \; \log \left( \frac{(x+1)^8}{(2x-1) \cdot x^2} \right) \\ \text{(iii)} \; x \approx 1.1981782972972785 \][/tex]
Thank you for joining our conversation. Don't hesitate to return anytime to find answers to your questions. Let's continue sharing knowledge and experiences! Thank you for choosing IDNLearn.com. We’re dedicated to providing clear answers, so visit us again for more solutions.