Find solutions to your questions with the help of IDNLearn.com's expert community. Get the information you need from our community of experts who provide accurate and comprehensive answers to all your questions.

Write the logarithmic properties at each step to solve the following questions:

(i) Simplify using logarithmic properties:

[tex]\[ \log_6\left(\frac{216^x}{1296^x}\right) + \log_x 6 \][/tex]

(ii) Condense the complex logarithm into a single term:

[tex]\[ \log((x+1)^2) + \log((2x-1)^3) - \log(x^2) - \log((2x-1)^4) + 6\log(x+1) \][/tex]

(iii) Solve:

[tex]\[ 10e^{2x-3} = 15e^{5x-7} \][/tex]


Sagot :

Sure, let's go through each part step by step using logarithmic properties.

### (i) Simplify Using Logarithmic Properties

Given:
[tex]\[ \log_6 \left(\frac{216^x}{1296^x}\right) \log_x 6 \][/tex]

We start by simplifying the expression inside the logarithm:
- Notice 216 and 1296 can be written in terms of 6:
- [tex]\( 216 = 6^3 \)[/tex]
- [tex]\( 1296 = 6^4 \)[/tex]

Rewrite the fraction:
[tex]\[ \frac{216^x}{1296^x} = \frac{(6^3)^x}{(6^4)^x} = \frac{6^{3x}}{6^{4x}} = 6^{3x-4x} = 6^{-x} \][/tex]

Now the original expression becomes:
[tex]\[ \log_6 (6^{-x}) \log_x 6 \][/tex]

Using the property of logarithms [tex]\(\log_b (b^a) = a\)[/tex]:
[tex]\[ \log_6 (6^{-x}) = -x \][/tex]

So we have:
[tex]\[ -x \log_x 6 \][/tex]

Thus, the simplified form is:
[tex]\[ -x \log_x 6 \][/tex]

### (ii) Condense the Complex Logarithm into a Single Term

Given:
[tex]\[ \log (x+1)^2 + \log (2x-1)^3 - \log (x)^2 - \log (2x-1)^4 + 6\log (x+1) \][/tex]

Using the properties of logarithms:

1. Combine logarithms with the same base:
[tex]\[ \log (x+1)^2 + 6 \log (x+1) = \log (x+1)^{2+6} = \log (x+1)^8 \][/tex]
[tex]\[ \log (2x-1)^3 - \log (2x-1)^4 = \log \left(\frac{(2x-1)^3}{(2x-1)^4}\right) = \log (2x-1)^{-1} \][/tex]
[tex]\[ -\log (x)^2 = \log (x)^{-2} \][/tex]

Combine these:
[tex]\[ \log (x+1)^8 + \log (2x-1)^{-1} + \log (x)^{-2} \][/tex]

Using the product property [tex]\( \log A + \log B = \log (A \cdot B) \)[/tex]:
[tex]\[ \log \left((x+1)^8 \cdot (2x-1)^{-1} \cdot (x)^{-2}\right) \][/tex]

Thus, the condensed form is:
[tex]\[ \log \left( \frac{(x+1)^8}{(2x-1) \cdot x^2} \right) \][/tex]

### (iii) Solve: [tex]\( 10 e^{2x-3} = 15 e^{5x-7} \)[/tex]

First, divide both sides by 10:
[tex]\[ e^{2x-3} = 1.5 e^{5x-7} \][/tex]

Take the natural logarithm (ln) of both sides:
[tex]\[ \ln(e^{2x-3}) = \ln(1.5e^{5x-7}) \][/tex]

Using the property [tex]\(\ln(e^a) = a\)[/tex] and [tex]\(\ln(ab) = \ln(a) + \ln(b)\)[/tex]:
[tex]\[ 2x - 3 = \ln(1.5) + \ln(e^{5x-7}) \][/tex]

Further simplifying gives:
[tex]\[ 2x - 3 = \ln(1.5) + 5x - 7 \][/tex]

Move terms involving [tex]\( x \)[/tex] to one side and constants to the other:
[tex]\[ 2x - 5x = \ln(1.5) - 7 + 3 \][/tex]
[tex]\[ -3x = \ln(1.5) - 4 \][/tex]

Solve for [tex]\( x \)[/tex]:
[tex]\[ x = \frac{4 - \ln(1.5)}{3} \][/tex]

Thus, the numerical value for [tex]\( x \)[/tex] is approximately:
[tex]\[ x \approx 1.1981782972972785 \][/tex]

So, the results are:
[tex]\[ \text{(i)} \; -x \log_x 6 \\ \text{(ii)} \; \log \left( \frac{(x+1)^8}{(2x-1) \cdot x^2} \right) \\ \text{(iii)} \; x \approx 1.1981782972972785 \][/tex]