Get personalized answers to your unique questions on IDNLearn.com. Discover in-depth and trustworthy answers from our extensive network of knowledgeable professionals.
Sagot :
Sure, let's work through each problem step-by-step.
### Problem 1: Solving [tex]\( 1-2 \cos \left(\theta-\frac{\pi}{5}\right)=0 \)[/tex] for [tex]\( -\pi<\theta \leqslant \pi \)[/tex]
First, rewrite the equation:
[tex]\[ 1 - 2 \cos \left(\theta - \frac{\pi}{5}\right) = 0 \][/tex]
Subtract 1 from both sides:
[tex]\[ -2 \cos \left(\theta - \frac{\pi}{5}\right) = -1 \][/tex]
Divide both sides by -2:
[tex]\[ \cos \left(\theta - \frac{\pi}{5}\right) = \frac{1}{2} \][/tex]
We need to find the values of [tex]\(\theta\)[/tex] that satisfy this equation. Recall that [tex]\(\cos \phi = \frac{1}{2}\)[/tex] has solutions:
[tex]\[ \phi = \frac{\pi}{3} \quad \text{or} \quad \phi = -\frac{\pi}{3} + 2k\pi \quad \text{for integer } k \][/tex]
Let's denote [tex]\(\phi = \theta - \frac{\pi}{5}\)[/tex]:
[tex]\[ \theta - \frac{\pi}{5} = \frac{\pi}{3} \quad \text{or} \quad \theta - \frac{\pi}{5} = -\frac{\pi}{3} + 2k\pi \][/tex]
Solve for [tex]\(\theta\)[/tex]:
[tex]\[ \theta = \frac{\pi}{3} + \frac{\pi}{5} = \frac{5\pi + 3\pi}{15} = \frac{8\pi}{15} \][/tex]
[tex]\[ \theta = -\frac{\pi}{3} + \frac{\pi}{5} + 2k\pi = -\frac{5\pi - 3\pi}{15} + 2k\pi = -\frac{2\pi}{15} + 2k\pi \][/tex]
We seek solutions where [tex]\(-\pi < \theta \leq \pi\)[/tex].
For [tex]\(k=0\)[/tex]:
[tex]\[ \theta = -\frac{2\pi}{15} \][/tex]
This is within [tex]\(-\pi\)[/tex] to [tex]\(\pi\)[/tex].
For [tex]\(k=1\)[/tex]:
[tex]\[ \theta = -\frac{2\pi}{15} + 2\pi = \frac{28\pi}{15} \quad \text{(not within the interval \(-\pi\) to \(\pi\))} \][/tex]
Thus, the solutions to [tex]\( \theta \)[/tex] in the range [tex]\(-\pi < \theta \leq \pi\)[/tex] are:
[tex]\[ \theta = \frac{8\pi}{15} \quad \text{and} \quad \theta = -\frac{2\pi}{15}. \][/tex]
### Problem 2: Solving [tex]\( 4 \cos ^2 x+7 \sin x-2=0 \)[/tex] for [tex]\( 0 \leqslant x < 360^\circ \)[/tex]
First, use the Pythagorean identity [tex]\( \cos^2 x = 1 - \sin^2 x \)[/tex]:
[tex]\[ 4 (1 - \sin^2 x) + 7 \sin x - 2 = 0 \][/tex]
Simplify:
[tex]\[ 4 - 4 \sin^2 x + 7 \sin x - 2 = 0 \][/tex]
Rearrange terms:
[tex]\[ -4 \sin^2 x + 7 \sin x + 2 = 0 \][/tex]
Multiply through by -1 to make the quadratic equation standard:
[tex]\[ 4 \sin^2 x - 7 \sin x - 2 = 0 \][/tex]
Let [tex]\( y = \sin x \)[/tex]. Then we have a quadratic equation:
[tex]\[ 4y^2 - 7y - 2 = 0 \][/tex]
We solve this quadratic equation using the quadratic formula, [tex]\( y = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \)[/tex]:
Here, [tex]\( a = 4 \)[/tex], [tex]\( b = -7 \)[/tex], [tex]\( c = -2 \)[/tex].
[tex]\[ y = \frac{7 \pm \sqrt{(-7)^2 - 4 \cdot 4 \cdot (-2)}}{2 \cdot 4} \][/tex]
[tex]\[ y = \frac{7 \pm \sqrt{49 + 32}}{8} \][/tex]
[tex]\[ y = \frac{7 \pm \sqrt{81}}{8} \][/tex]
[tex]\[ y = \frac{7 \pm 9}{8} \][/tex]
So, we have two possible values for [tex]\( y \)[/tex]:
[tex]\[ y = \frac{16}{8} = 2 \quad \text{(discard, since } -1 \leq y \leq 1) \][/tex]
[tex]\[ y = \frac{-2}{8} = -\frac{1}{4} \][/tex]
Thus, [tex]\(\sin x = -\frac{1}{4}\)[/tex].
Using the arcsine function:
[tex]\[ x = \arcsin(-\frac{1}{4}) \][/tex]
For [tex]\( 0^\circ \leqslant x < 360^\circ \)[/tex], [tex]\(\sin x = -\frac{1}{4}\)[/tex] occurs in the third and fourth quadrants:
[tex]\[ x = 180^\circ + \arcsin(-\frac{1}{4}) \quad \text{and} \quad x = 360^\circ - \arcsin(-\frac{1}{4}) \][/tex]
Calculating these, we use a calculator:
[tex]\[ \arcsin(-\frac{1}{4}) \approx -14.5^\circ \][/tex]
[tex]\[ x \approx 180^\circ - 14.5^\circ \quad \Rightarrow \quad x \approx 165.5^\circ \][/tex]
[tex]\[ x \approx 360^\circ + 14.5^\circ \quad \Rightarrow \quad x \approx 345.5^\circ \][/tex]
Thus, the solutions in the range [tex]\(0^\circ \leq x < 360^\circ\)[/tex] are:
[tex]\[ x \approx 165.5^\circ \quad \text{and} \quad x \approx 345.5^\circ \][/tex]
### Problem 1: Solving [tex]\( 1-2 \cos \left(\theta-\frac{\pi}{5}\right)=0 \)[/tex] for [tex]\( -\pi<\theta \leqslant \pi \)[/tex]
First, rewrite the equation:
[tex]\[ 1 - 2 \cos \left(\theta - \frac{\pi}{5}\right) = 0 \][/tex]
Subtract 1 from both sides:
[tex]\[ -2 \cos \left(\theta - \frac{\pi}{5}\right) = -1 \][/tex]
Divide both sides by -2:
[tex]\[ \cos \left(\theta - \frac{\pi}{5}\right) = \frac{1}{2} \][/tex]
We need to find the values of [tex]\(\theta\)[/tex] that satisfy this equation. Recall that [tex]\(\cos \phi = \frac{1}{2}\)[/tex] has solutions:
[tex]\[ \phi = \frac{\pi}{3} \quad \text{or} \quad \phi = -\frac{\pi}{3} + 2k\pi \quad \text{for integer } k \][/tex]
Let's denote [tex]\(\phi = \theta - \frac{\pi}{5}\)[/tex]:
[tex]\[ \theta - \frac{\pi}{5} = \frac{\pi}{3} \quad \text{or} \quad \theta - \frac{\pi}{5} = -\frac{\pi}{3} + 2k\pi \][/tex]
Solve for [tex]\(\theta\)[/tex]:
[tex]\[ \theta = \frac{\pi}{3} + \frac{\pi}{5} = \frac{5\pi + 3\pi}{15} = \frac{8\pi}{15} \][/tex]
[tex]\[ \theta = -\frac{\pi}{3} + \frac{\pi}{5} + 2k\pi = -\frac{5\pi - 3\pi}{15} + 2k\pi = -\frac{2\pi}{15} + 2k\pi \][/tex]
We seek solutions where [tex]\(-\pi < \theta \leq \pi\)[/tex].
For [tex]\(k=0\)[/tex]:
[tex]\[ \theta = -\frac{2\pi}{15} \][/tex]
This is within [tex]\(-\pi\)[/tex] to [tex]\(\pi\)[/tex].
For [tex]\(k=1\)[/tex]:
[tex]\[ \theta = -\frac{2\pi}{15} + 2\pi = \frac{28\pi}{15} \quad \text{(not within the interval \(-\pi\) to \(\pi\))} \][/tex]
Thus, the solutions to [tex]\( \theta \)[/tex] in the range [tex]\(-\pi < \theta \leq \pi\)[/tex] are:
[tex]\[ \theta = \frac{8\pi}{15} \quad \text{and} \quad \theta = -\frac{2\pi}{15}. \][/tex]
### Problem 2: Solving [tex]\( 4 \cos ^2 x+7 \sin x-2=0 \)[/tex] for [tex]\( 0 \leqslant x < 360^\circ \)[/tex]
First, use the Pythagorean identity [tex]\( \cos^2 x = 1 - \sin^2 x \)[/tex]:
[tex]\[ 4 (1 - \sin^2 x) + 7 \sin x - 2 = 0 \][/tex]
Simplify:
[tex]\[ 4 - 4 \sin^2 x + 7 \sin x - 2 = 0 \][/tex]
Rearrange terms:
[tex]\[ -4 \sin^2 x + 7 \sin x + 2 = 0 \][/tex]
Multiply through by -1 to make the quadratic equation standard:
[tex]\[ 4 \sin^2 x - 7 \sin x - 2 = 0 \][/tex]
Let [tex]\( y = \sin x \)[/tex]. Then we have a quadratic equation:
[tex]\[ 4y^2 - 7y - 2 = 0 \][/tex]
We solve this quadratic equation using the quadratic formula, [tex]\( y = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \)[/tex]:
Here, [tex]\( a = 4 \)[/tex], [tex]\( b = -7 \)[/tex], [tex]\( c = -2 \)[/tex].
[tex]\[ y = \frac{7 \pm \sqrt{(-7)^2 - 4 \cdot 4 \cdot (-2)}}{2 \cdot 4} \][/tex]
[tex]\[ y = \frac{7 \pm \sqrt{49 + 32}}{8} \][/tex]
[tex]\[ y = \frac{7 \pm \sqrt{81}}{8} \][/tex]
[tex]\[ y = \frac{7 \pm 9}{8} \][/tex]
So, we have two possible values for [tex]\( y \)[/tex]:
[tex]\[ y = \frac{16}{8} = 2 \quad \text{(discard, since } -1 \leq y \leq 1) \][/tex]
[tex]\[ y = \frac{-2}{8} = -\frac{1}{4} \][/tex]
Thus, [tex]\(\sin x = -\frac{1}{4}\)[/tex].
Using the arcsine function:
[tex]\[ x = \arcsin(-\frac{1}{4}) \][/tex]
For [tex]\( 0^\circ \leqslant x < 360^\circ \)[/tex], [tex]\(\sin x = -\frac{1}{4}\)[/tex] occurs in the third and fourth quadrants:
[tex]\[ x = 180^\circ + \arcsin(-\frac{1}{4}) \quad \text{and} \quad x = 360^\circ - \arcsin(-\frac{1}{4}) \][/tex]
Calculating these, we use a calculator:
[tex]\[ \arcsin(-\frac{1}{4}) \approx -14.5^\circ \][/tex]
[tex]\[ x \approx 180^\circ - 14.5^\circ \quad \Rightarrow \quad x \approx 165.5^\circ \][/tex]
[tex]\[ x \approx 360^\circ + 14.5^\circ \quad \Rightarrow \quad x \approx 345.5^\circ \][/tex]
Thus, the solutions in the range [tex]\(0^\circ \leq x < 360^\circ\)[/tex] are:
[tex]\[ x \approx 165.5^\circ \quad \text{and} \quad x \approx 345.5^\circ \][/tex]
We value your presence here. Keep sharing knowledge and helping others find the answers they need. This community is the perfect place to learn together. IDNLearn.com has the answers you need. Thank you for visiting, and we look forward to helping you again soon.