Discover new perspectives and gain insights with IDNLearn.com's diverse answers. Whether your question is simple or complex, our community is here to provide detailed and trustworthy answers quickly and effectively.
Sagot :
Let's go through each part of the question step-by-step.
Given the function [tex]\( f(x) = x^3 + 3x^2 - 45x + 2 \)[/tex], we answer the questions as follows:
### (a) First Derivative
To find the first derivative [tex]\( f'(x) \)[/tex]:
[tex]\[ f'(x) = \frac{d}{dx}(x^3 + 3x^2 - 45x + 2) \][/tex]
Using the power rule [tex]\( \left(\frac{d}{dx} x^n = nx^{n-1}\right) \)[/tex]:
[tex]\[ f'(x) = \frac{d}{dx}(x^3) + \frac{d}{dx}(3x^2) + \frac{d}{dx}(-45x) + \frac{d}{dx}(2) \][/tex]
[tex]\[ f'(x) = 3x^2 + 6x - 45 \][/tex]
### (b) Second Derivative
To find the second derivative [tex]\( f''(x) \)[/tex]:
[tex]\[ f''(x) = \frac{d}{dx}(3x^2 + 6x - 45) \][/tex]
Using the power rule:
[tex]\[ f''(x) = \frac{d}{dx}(3x^2) + \frac{d}{dx}(6x) + \frac{d}{dx}(-45) \][/tex]
[tex]\[ f''(x) = 6x + 6 \][/tex]
### (c) Intervals of Increasing
To find the intervals where [tex]\( f \)[/tex] is increasing, find critical points by setting [tex]\( f'(x) = 0 \)[/tex]:
[tex]\[ 3x^2 + 6x - 45 = 0 \][/tex]
Solve this quadratic equation for [tex]\( x \)[/tex]:
[tex]\[ x^2 + 2x - 15 = 0 \][/tex]
[tex]\[ (x + 5)(x - 3) = 0 \][/tex]
[tex]\[ x = -5, \, 3 \][/tex]
Now, analyze the sign of [tex]\( f'(x) \)[/tex] around these critical points. The intervals are divided by [tex]\( x = -5 \)[/tex] and [tex]\( x = 3 \)[/tex]:
- For [tex]\( x < -5 \)[/tex]: [tex]\( f'(x) > 0 \)[/tex]
- For [tex]\( -5 < x < 3 \)[/tex]: [tex]\( f'(x) < 0 \)[/tex]
- For [tex]\( x > 3 \)[/tex]: [tex]\( f'(x) > 0 \)[/tex]
Thus, the function [tex]\( f \)[/tex] is increasing on the intervals:
Interval of increasing = [tex]\([-5, \infty)\)[/tex]
### (d) Intervals of Decreasing
From the above analysis:
Interval of decreasing = [tex]\((-\infty, -5]\)[/tex]
### (e) Intervals of Concave Downward
To find the intervals of concavity, solve [tex]\( f''(x) = 0 \)[/tex]:
[tex]\[ 6x + 6 = 0 \][/tex]
[tex]\[ x = -1 \][/tex]
Now, analyze the sign of [tex]\( f''(x) \)[/tex] around [tex]\( x = -1 \)[/tex]:
- For [tex]\( x < -1 \)[/tex]: [tex]\( f''(x) < 0 \)[/tex]
- For [tex]\( x > -1 \)[/tex]: [tex]\( f''(x) > 0 \)[/tex]
Thus, the function [tex]\( f \)[/tex] is concave downward on the interval:
Interval of downward concavity = [tex]\((-\infty, -1]\)[/tex]
### (f) Intervals of Concave Upward
From the above analysis:
Interval of upward concavity = [tex]\([-1, \infty)\)[/tex]
In summary:
(c) The interval where [tex]\( f \)[/tex] is increasing: [tex]\([-5, \infty)\)[/tex]
(d) The interval where [tex]\( f \)[/tex] is decreasing: [tex]\((-\infty, -5]\)[/tex]
(e) The interval where [tex]\( f \)[/tex] is concave downward: [tex]\((-\infty, -1]\)[/tex]
(f) The interval where [tex]\( f \)[/tex] is concave upward: [tex]\([-1, \infty)\)[/tex]
Given the function [tex]\( f(x) = x^3 + 3x^2 - 45x + 2 \)[/tex], we answer the questions as follows:
### (a) First Derivative
To find the first derivative [tex]\( f'(x) \)[/tex]:
[tex]\[ f'(x) = \frac{d}{dx}(x^3 + 3x^2 - 45x + 2) \][/tex]
Using the power rule [tex]\( \left(\frac{d}{dx} x^n = nx^{n-1}\right) \)[/tex]:
[tex]\[ f'(x) = \frac{d}{dx}(x^3) + \frac{d}{dx}(3x^2) + \frac{d}{dx}(-45x) + \frac{d}{dx}(2) \][/tex]
[tex]\[ f'(x) = 3x^2 + 6x - 45 \][/tex]
### (b) Second Derivative
To find the second derivative [tex]\( f''(x) \)[/tex]:
[tex]\[ f''(x) = \frac{d}{dx}(3x^2 + 6x - 45) \][/tex]
Using the power rule:
[tex]\[ f''(x) = \frac{d}{dx}(3x^2) + \frac{d}{dx}(6x) + \frac{d}{dx}(-45) \][/tex]
[tex]\[ f''(x) = 6x + 6 \][/tex]
### (c) Intervals of Increasing
To find the intervals where [tex]\( f \)[/tex] is increasing, find critical points by setting [tex]\( f'(x) = 0 \)[/tex]:
[tex]\[ 3x^2 + 6x - 45 = 0 \][/tex]
Solve this quadratic equation for [tex]\( x \)[/tex]:
[tex]\[ x^2 + 2x - 15 = 0 \][/tex]
[tex]\[ (x + 5)(x - 3) = 0 \][/tex]
[tex]\[ x = -5, \, 3 \][/tex]
Now, analyze the sign of [tex]\( f'(x) \)[/tex] around these critical points. The intervals are divided by [tex]\( x = -5 \)[/tex] and [tex]\( x = 3 \)[/tex]:
- For [tex]\( x < -5 \)[/tex]: [tex]\( f'(x) > 0 \)[/tex]
- For [tex]\( -5 < x < 3 \)[/tex]: [tex]\( f'(x) < 0 \)[/tex]
- For [tex]\( x > 3 \)[/tex]: [tex]\( f'(x) > 0 \)[/tex]
Thus, the function [tex]\( f \)[/tex] is increasing on the intervals:
Interval of increasing = [tex]\([-5, \infty)\)[/tex]
### (d) Intervals of Decreasing
From the above analysis:
Interval of decreasing = [tex]\((-\infty, -5]\)[/tex]
### (e) Intervals of Concave Downward
To find the intervals of concavity, solve [tex]\( f''(x) = 0 \)[/tex]:
[tex]\[ 6x + 6 = 0 \][/tex]
[tex]\[ x = -1 \][/tex]
Now, analyze the sign of [tex]\( f''(x) \)[/tex] around [tex]\( x = -1 \)[/tex]:
- For [tex]\( x < -1 \)[/tex]: [tex]\( f''(x) < 0 \)[/tex]
- For [tex]\( x > -1 \)[/tex]: [tex]\( f''(x) > 0 \)[/tex]
Thus, the function [tex]\( f \)[/tex] is concave downward on the interval:
Interval of downward concavity = [tex]\((-\infty, -1]\)[/tex]
### (f) Intervals of Concave Upward
From the above analysis:
Interval of upward concavity = [tex]\([-1, \infty)\)[/tex]
In summary:
(c) The interval where [tex]\( f \)[/tex] is increasing: [tex]\([-5, \infty)\)[/tex]
(d) The interval where [tex]\( f \)[/tex] is decreasing: [tex]\((-\infty, -5]\)[/tex]
(e) The interval where [tex]\( f \)[/tex] is concave downward: [tex]\((-\infty, -1]\)[/tex]
(f) The interval where [tex]\( f \)[/tex] is concave upward: [tex]\([-1, \infty)\)[/tex]
We are delighted to have you as part of our community. Keep asking, answering, and sharing your insights. Together, we can create a valuable knowledge resource. Thank you for trusting IDNLearn.com with your questions. Visit us again for clear, concise, and accurate answers.