From simple queries to complex problems, IDNLearn.com provides reliable answers. Our experts provide timely, comprehensive responses to ensure you have the information you need.
Sagot :
Certainly! Let's break down the problem step-by-step to find the forces required to move pistons [tex]$B$[/tex] and [tex]$C$[/tex] when a force of 100 N is applied on piston [tex]$A$[/tex], given the relationships between their surface areas.
### Step-by-Step Solution:
1. Identifying Relationships:
Given:
- The surface area of piston [tex]\( A \)[/tex] is 2 times that of piston [tex]\( B \)[/tex].
- The surface area of piston [tex]\( A \)[/tex] is 3 times that of piston [tex]\( C \)[/tex].
2. Defining Surface Areas:
Let's denote:
- Surface area of piston [tex]\( B \)[/tex] as [tex]\( B \)[/tex].
- Surface area of piston [tex]\( C \)[/tex] as [tex]\( C \)[/tex].
- Surface area of piston [tex]\( A \)[/tex] as [tex]\( A \)[/tex].
Using the given relationships:
- [tex]\( A = 2B \)[/tex]
- [tex]\( A = 3C \)[/tex]
3. Assuming Surface Area Values:
To simplify calculations, let's assume that the surface area of piston [tex]\( B \)[/tex] is [tex]\( 1 \)[/tex] unit. Consequently:
- [tex]\( B = 1 \)[/tex]
- [tex]\( A = 2B = 2 \times 1 = 2 \)[/tex] units.
- [tex]\( C = \frac{A}{3} = \frac{2}{3} \)[/tex] units.
4. Applying Pascal's Principle:
According to Pascal's principle:
[tex]\[ \frac{F_B}{B} = \frac{F_A}{A} \][/tex]
[tex]\[ \frac{F_C}{C} = \frac{F_A}{A} \][/tex]
Where:
- [tex]\( F_A \)[/tex] is the force applied on piston [tex]\( A \)[/tex].
- [tex]\( F_B \)[/tex] is the force on piston [tex]\( B \)[/tex].
- [tex]\( F_C \)[/tex] is the force on piston [tex]\( C \)[/tex].
Given [tex]\( F_A = 100 \)[/tex] N (force on piston [tex]\( A \)[/tex]).
5. Calculating Force on Piston B:
Using the relationship:
[tex]\[ F_B = \left( \frac{F_A}{A} \right) \times B \][/tex]
Substituting in the known values:
[tex]\[ F_B = \left( \frac{100 \text{ N}}{2 \text{ units}} \right) \times 1 \text{ unit} = 50 \text{ N} \][/tex]
6. Calculating Force on Piston C:
Using the relationship:
[tex]\[ F_C = \left( \frac{F_A}{A} \right) \times C \][/tex]
Substituting in the known values:
[tex]\[ F_C = \left( \frac{100 \text{ N}}{2 \text{ units}} \right) \times \left( \frac{2}{3} \text{ units} \right) = \frac{100 \text{ N}}{2} \times \frac{2}{3} = \frac{100 \times 2}{2 \times 3} = \frac{100}{3} \approx 33.33 \text{ N} \][/tex]
### Conclusion:
- The force required to move piston [tex]\( B \)[/tex] is [tex]\( 50 \)[/tex] N.
- The force required to move piston [tex]\( C \)[/tex] is approximately [tex]\( 33.33 \)[/tex] N.
These detailed calculations show how we can arrive at the quantities of force needed to move pistons [tex]\( B \)[/tex] and [tex]\( C \)[/tex].
### Step-by-Step Solution:
1. Identifying Relationships:
Given:
- The surface area of piston [tex]\( A \)[/tex] is 2 times that of piston [tex]\( B \)[/tex].
- The surface area of piston [tex]\( A \)[/tex] is 3 times that of piston [tex]\( C \)[/tex].
2. Defining Surface Areas:
Let's denote:
- Surface area of piston [tex]\( B \)[/tex] as [tex]\( B \)[/tex].
- Surface area of piston [tex]\( C \)[/tex] as [tex]\( C \)[/tex].
- Surface area of piston [tex]\( A \)[/tex] as [tex]\( A \)[/tex].
Using the given relationships:
- [tex]\( A = 2B \)[/tex]
- [tex]\( A = 3C \)[/tex]
3. Assuming Surface Area Values:
To simplify calculations, let's assume that the surface area of piston [tex]\( B \)[/tex] is [tex]\( 1 \)[/tex] unit. Consequently:
- [tex]\( B = 1 \)[/tex]
- [tex]\( A = 2B = 2 \times 1 = 2 \)[/tex] units.
- [tex]\( C = \frac{A}{3} = \frac{2}{3} \)[/tex] units.
4. Applying Pascal's Principle:
According to Pascal's principle:
[tex]\[ \frac{F_B}{B} = \frac{F_A}{A} \][/tex]
[tex]\[ \frac{F_C}{C} = \frac{F_A}{A} \][/tex]
Where:
- [tex]\( F_A \)[/tex] is the force applied on piston [tex]\( A \)[/tex].
- [tex]\( F_B \)[/tex] is the force on piston [tex]\( B \)[/tex].
- [tex]\( F_C \)[/tex] is the force on piston [tex]\( C \)[/tex].
Given [tex]\( F_A = 100 \)[/tex] N (force on piston [tex]\( A \)[/tex]).
5. Calculating Force on Piston B:
Using the relationship:
[tex]\[ F_B = \left( \frac{F_A}{A} \right) \times B \][/tex]
Substituting in the known values:
[tex]\[ F_B = \left( \frac{100 \text{ N}}{2 \text{ units}} \right) \times 1 \text{ unit} = 50 \text{ N} \][/tex]
6. Calculating Force on Piston C:
Using the relationship:
[tex]\[ F_C = \left( \frac{F_A}{A} \right) \times C \][/tex]
Substituting in the known values:
[tex]\[ F_C = \left( \frac{100 \text{ N}}{2 \text{ units}} \right) \times \left( \frac{2}{3} \text{ units} \right) = \frac{100 \text{ N}}{2} \times \frac{2}{3} = \frac{100 \times 2}{2 \times 3} = \frac{100}{3} \approx 33.33 \text{ N} \][/tex]
### Conclusion:
- The force required to move piston [tex]\( B \)[/tex] is [tex]\( 50 \)[/tex] N.
- The force required to move piston [tex]\( C \)[/tex] is approximately [tex]\( 33.33 \)[/tex] N.
These detailed calculations show how we can arrive at the quantities of force needed to move pistons [tex]\( B \)[/tex] and [tex]\( C \)[/tex].
We appreciate every question and answer you provide. Keep engaging and finding the best solutions. This community is the perfect place to learn and grow together. Your questions deserve precise answers. Thank you for visiting IDNLearn.com, and see you again soon for more helpful information.