IDNLearn.com is the perfect place to get detailed and accurate answers to your questions. Our platform provides trustworthy answers to help you make informed decisions quickly and easily.
Sagot :
Sure, let's analyze the solution based on the information provided and identify the species that will be present in the solution, as well as classify them as acids, bases, or neither.
### Analysis:
1. Initial Concentrations:
- HCN concentration (0.9 M)
- KCN concentration (0.9 M)
- Amount of KOH (0.3 mol in 1.0 L solution, thus 0.3 M)
2. Reactions:
- [tex]\( \text{HCN} \)[/tex] is a weak acid:
[tex]\[ \text{HCN} \leftrightharpoons \text{H}^+ + \text{CN}^- \][/tex]
- [tex]\( \text{KOH} \)[/tex] is a strong base and will completely dissociate to:
[tex]\[ \text{KOH} \rightarrow \text{K}^+ + \text{OH}^- \][/tex]
- The [tex]\( \text{OH}^- \)[/tex] from [tex]\( \text{KOH} \)[/tex] will react with [tex]\( \text{HCN} \)[/tex], neutralizing some of it:
[tex]\[ \text{OH}^- + \text{HCN} \rightarrow \text{H}_2\text{O} + \text{CN}^- \][/tex]
Since we have 0.3 mol of [tex]\( \text{KOH} \)[/tex] and 0.9 mol of [tex]\( \text{HCN} \)[/tex], the reaction will consume all 0.3 mol of [tex]\( \text{OH}^- \)[/tex] and equivalent moles of [tex]\( \text{HCN} \)[/tex], leaving:
- [tex]\( 0.9 \text{ mol} \, \text{HCN} - 0.3 \text{ mol}\, \text{HCN} = 0.6 \text{ mol} \, \text{HCN} \)[/tex] (leftover)
- [tex]\( 0.3 \text{ mol} \, \text{OH}^{-} \rightarrow \text{0 mol}\,\text{OH}^{-} (\text{since it's completely reacted}) \)[/tex]
- [tex]\( 0.3 \text{ mol} \, \text{CN}^- \, (\text{from the reaction}) + \text{0.9 mol}\, \text{CN}^- \, (\text{from KCN}) = 1.2 \text{ mol}\, \text{CN}^- \)[/tex]
### Major Species at Equilibrium:
Let's classify the resultant species:
- Acids: [tex]\( \text{HCN} \)[/tex] (as it can donate a proton, [tex]\( \text{H}^+ \)[/tex])
- Bases: [tex]\( \text{OH}^- \)[/tex] (produced from [tex]\( \text{KOH} \)[/tex]), [tex]\( \text{CN}^- \)[/tex] (produced from both HCN reaction and KCN dissociation)
- Other: [tex]\( \text{K}^+ \)[/tex] (from both [tex]\( \text{KOH} \)[/tex] and [tex]\( \text{KCN} \)[/tex])
### Summary:
- Acids: [tex]\( \text{HCN} \)[/tex]
- Bases: [tex]\( \text{OH}^- \)[/tex], [tex]\( \text{CN}^- \)[/tex]
- Other: [tex]\( \text{K}^+ \)[/tex]
Thus, the major species present at equilibrium are categorized as follows:
Acids:
[tex]\[ \text{HCN} \][/tex]
Bases:
[tex]\[ \text{OH}^-, \text{CN}^- \][/tex]
Other:
[tex]\[ \text{K}^+ \][/tex]
### Analysis:
1. Initial Concentrations:
- HCN concentration (0.9 M)
- KCN concentration (0.9 M)
- Amount of KOH (0.3 mol in 1.0 L solution, thus 0.3 M)
2. Reactions:
- [tex]\( \text{HCN} \)[/tex] is a weak acid:
[tex]\[ \text{HCN} \leftrightharpoons \text{H}^+ + \text{CN}^- \][/tex]
- [tex]\( \text{KOH} \)[/tex] is a strong base and will completely dissociate to:
[tex]\[ \text{KOH} \rightarrow \text{K}^+ + \text{OH}^- \][/tex]
- The [tex]\( \text{OH}^- \)[/tex] from [tex]\( \text{KOH} \)[/tex] will react with [tex]\( \text{HCN} \)[/tex], neutralizing some of it:
[tex]\[ \text{OH}^- + \text{HCN} \rightarrow \text{H}_2\text{O} + \text{CN}^- \][/tex]
Since we have 0.3 mol of [tex]\( \text{KOH} \)[/tex] and 0.9 mol of [tex]\( \text{HCN} \)[/tex], the reaction will consume all 0.3 mol of [tex]\( \text{OH}^- \)[/tex] and equivalent moles of [tex]\( \text{HCN} \)[/tex], leaving:
- [tex]\( 0.9 \text{ mol} \, \text{HCN} - 0.3 \text{ mol}\, \text{HCN} = 0.6 \text{ mol} \, \text{HCN} \)[/tex] (leftover)
- [tex]\( 0.3 \text{ mol} \, \text{OH}^{-} \rightarrow \text{0 mol}\,\text{OH}^{-} (\text{since it's completely reacted}) \)[/tex]
- [tex]\( 0.3 \text{ mol} \, \text{CN}^- \, (\text{from the reaction}) + \text{0.9 mol}\, \text{CN}^- \, (\text{from KCN}) = 1.2 \text{ mol}\, \text{CN}^- \)[/tex]
### Major Species at Equilibrium:
Let's classify the resultant species:
- Acids: [tex]\( \text{HCN} \)[/tex] (as it can donate a proton, [tex]\( \text{H}^+ \)[/tex])
- Bases: [tex]\( \text{OH}^- \)[/tex] (produced from [tex]\( \text{KOH} \)[/tex]), [tex]\( \text{CN}^- \)[/tex] (produced from both HCN reaction and KCN dissociation)
- Other: [tex]\( \text{K}^+ \)[/tex] (from both [tex]\( \text{KOH} \)[/tex] and [tex]\( \text{KCN} \)[/tex])
### Summary:
- Acids: [tex]\( \text{HCN} \)[/tex]
- Bases: [tex]\( \text{OH}^- \)[/tex], [tex]\( \text{CN}^- \)[/tex]
- Other: [tex]\( \text{K}^+ \)[/tex]
Thus, the major species present at equilibrium are categorized as follows:
Acids:
[tex]\[ \text{HCN} \][/tex]
Bases:
[tex]\[ \text{OH}^-, \text{CN}^- \][/tex]
Other:
[tex]\[ \text{K}^+ \][/tex]
Your participation means a lot to us. Keep sharing information and solutions. This community grows thanks to the amazing contributions from members like you. IDNLearn.com is your source for precise answers. Thank you for visiting, and we look forward to helping you again soon.