IDNLearn.com is the place where your questions are met with thoughtful and precise answers. Join our community to receive prompt, thorough responses from knowledgeable experts.
Sagot :
Let's break down the calculation to find the solubility of AgCl in both pure water and in a 0.0140 M Mg(NO₃)₂ solution step-by-step:
### Solubility in Pure Water:
1. Determine the Solubility Product Constant (Ksp):
- The solubility product constant for AgCl at 25°C is [tex]\( Ksp_{AgCl} = 1.77 \times 10^{-10} \)[/tex].
2. Understand the Dissolution and Solubility Calculation:
- AgCl dissociates in water as follows:
[tex]\[ AgCl(s) \rightleftharpoons Ag^+(aq) + Cl^-(aq) \][/tex]
- Let [tex]\( s \)[/tex] be the solubility of AgCl in mol/L.
- Thus, [tex]\([Ag^+] = s\)[/tex] and [tex]\([Cl^-] = s\)[/tex].
- The Ksp expression can be written as:
[tex]\[ Ksp_{AgCl} = [Ag^+][Cl^-] = s \cdot s = s^2 \][/tex]
- Solving for [tex]\( s \)[/tex]:
[tex]\[ s = \sqrt{Ksp_{AgCl}} = \sqrt{1.77 \times 10^{-10}} \][/tex]
3. Calculate the Solubility in mol/L:
- Evaluating the square root:
[tex]\[ s = \sqrt{1.77 \times 10^{-10}} \approx 1.33 \times 10^{-5} \text{ mol/L} \][/tex]
4. Convert to g/L:
- Molar mass of AgCl is approximately 143.32 g/mol.
[tex]\[ \text{Solubility in g/L} = s \times \text{molar mass of AgCl} \approx 1.33 \times 10^{-5} \times 143.32 \][/tex]
- Simplifying:
[tex]\[ \text{Solubility in pure water} \approx 0.0 \frac{g}{L} \][/tex]
### Solubility in 0.0140 M Mg(NO₃)₂ solution:
1. Determine the Contribution of Mg(NO₃)₂:
- Mg(NO₃)₂ dissociates completely in water:
[tex]\[ Mg(NO_3)_2 \rightarrow Mg^{2+}(aq) + 2 NO_3^-(aq) \][/tex]
- Therefore, a 0.0140 M [tex]\( Mg(NO_3)_2 \)[/tex] solution provides:
[tex]\[ \left[ Mg^{2+} \right] = 0.0140 \text{ M} \][/tex]
2. Account for the Common Ion Effect:
- In the presence of [tex]\( Mg^{2+} \)[/tex], the solubility [tex]\( s \)[/tex] of [tex]\( AgCl \)[/tex] is affected.
- The Ksp expression in this context:
[tex]\[ Ksp_{AgCl} = [Ag^+][Cl^-] = (0.0140) \cdot s \][/tex]
- Solving for [tex]\( s \)[/tex]:
[tex]\[ s = \frac{Ksp_{AgCl}}{\left[ Mg^{2+} \right]} = \frac{1.77 \times 10^{-10}}{0.0140} \][/tex]
3. Calculate the Solubility in mol/L:
- Simplifying:
[tex]\[ s \approx 1.26 \times 10^{-8} \text{ mol/L} \][/tex]
4. Convert to g/L:
- Molar mass of AgCl is approximately 143.32 g/mol.
[tex]\[ \text{Solubility in g/L} = s \times \text{molar mass of AgCl} \approx 1.26 \times 10^{-8} \times 143.32 \][/tex]
- Simplifying:
[tex]\[ \text{Solubility in} \ 0.0140 \text{ M } Mg(NO_3)_2 \approx 0.0 \frac{g}{L} \][/tex]
### Summary:
- Solubility in pure water: [tex]\( 0.0 \frac{g}{L} \)[/tex]
- Solubility in 0.0140 M Mg(NO₃)₂ solution: [tex]\( 0.0 \frac{g}{L} \)[/tex]
Both the solubility numbers are rounded to two significant digits as instructed.
### Solubility in Pure Water:
1. Determine the Solubility Product Constant (Ksp):
- The solubility product constant for AgCl at 25°C is [tex]\( Ksp_{AgCl} = 1.77 \times 10^{-10} \)[/tex].
2. Understand the Dissolution and Solubility Calculation:
- AgCl dissociates in water as follows:
[tex]\[ AgCl(s) \rightleftharpoons Ag^+(aq) + Cl^-(aq) \][/tex]
- Let [tex]\( s \)[/tex] be the solubility of AgCl in mol/L.
- Thus, [tex]\([Ag^+] = s\)[/tex] and [tex]\([Cl^-] = s\)[/tex].
- The Ksp expression can be written as:
[tex]\[ Ksp_{AgCl} = [Ag^+][Cl^-] = s \cdot s = s^2 \][/tex]
- Solving for [tex]\( s \)[/tex]:
[tex]\[ s = \sqrt{Ksp_{AgCl}} = \sqrt{1.77 \times 10^{-10}} \][/tex]
3. Calculate the Solubility in mol/L:
- Evaluating the square root:
[tex]\[ s = \sqrt{1.77 \times 10^{-10}} \approx 1.33 \times 10^{-5} \text{ mol/L} \][/tex]
4. Convert to g/L:
- Molar mass of AgCl is approximately 143.32 g/mol.
[tex]\[ \text{Solubility in g/L} = s \times \text{molar mass of AgCl} \approx 1.33 \times 10^{-5} \times 143.32 \][/tex]
- Simplifying:
[tex]\[ \text{Solubility in pure water} \approx 0.0 \frac{g}{L} \][/tex]
### Solubility in 0.0140 M Mg(NO₃)₂ solution:
1. Determine the Contribution of Mg(NO₃)₂:
- Mg(NO₃)₂ dissociates completely in water:
[tex]\[ Mg(NO_3)_2 \rightarrow Mg^{2+}(aq) + 2 NO_3^-(aq) \][/tex]
- Therefore, a 0.0140 M [tex]\( Mg(NO_3)_2 \)[/tex] solution provides:
[tex]\[ \left[ Mg^{2+} \right] = 0.0140 \text{ M} \][/tex]
2. Account for the Common Ion Effect:
- In the presence of [tex]\( Mg^{2+} \)[/tex], the solubility [tex]\( s \)[/tex] of [tex]\( AgCl \)[/tex] is affected.
- The Ksp expression in this context:
[tex]\[ Ksp_{AgCl} = [Ag^+][Cl^-] = (0.0140) \cdot s \][/tex]
- Solving for [tex]\( s \)[/tex]:
[tex]\[ s = \frac{Ksp_{AgCl}}{\left[ Mg^{2+} \right]} = \frac{1.77 \times 10^{-10}}{0.0140} \][/tex]
3. Calculate the Solubility in mol/L:
- Simplifying:
[tex]\[ s \approx 1.26 \times 10^{-8} \text{ mol/L} \][/tex]
4. Convert to g/L:
- Molar mass of AgCl is approximately 143.32 g/mol.
[tex]\[ \text{Solubility in g/L} = s \times \text{molar mass of AgCl} \approx 1.26 \times 10^{-8} \times 143.32 \][/tex]
- Simplifying:
[tex]\[ \text{Solubility in} \ 0.0140 \text{ M } Mg(NO_3)_2 \approx 0.0 \frac{g}{L} \][/tex]
### Summary:
- Solubility in pure water: [tex]\( 0.0 \frac{g}{L} \)[/tex]
- Solubility in 0.0140 M Mg(NO₃)₂ solution: [tex]\( 0.0 \frac{g}{L} \)[/tex]
Both the solubility numbers are rounded to two significant digits as instructed.
Thank you for contributing to our discussion. Don't forget to check back for new answers. Keep asking, answering, and sharing useful information. Thank you for choosing IDNLearn.com for your queries. We’re committed to providing accurate answers, so visit us again soon.