Find the best solutions to your problems with the help of IDNLearn.com's expert users. Discover the information you need from our experienced professionals who provide accurate and reliable answers to all your questions.
Sagot :
To find a power regression model for the given data, we aim to fit an equation of the form [tex]\( y = a \cdot x^b \)[/tex], where [tex]\( a \)[/tex] and [tex]\( b \)[/tex] are constants to be determined. The provided dataset is:
[tex]\[ \begin{array}{|c|c|c|c|c|c|c|} \hline x & 1 & 2 & 4 & 5 & 6 & 8 \\ \hline y & 112 & 41 & 28 & 31 & 18 & 8 \\ \hline \end{array} \][/tex]
Here are the steps to find the parameters [tex]\( a \)[/tex] and [tex]\( b \)[/tex]:
1. Define the power regression equation: [tex]\( y = a \cdot x^b \)[/tex].
2. Transform the data: One common approach to linearize the equation is to take the natural logarithm of both sides. Doing so, we get:
[tex]\[ \ln(y) = \ln(a) + b \ln(x) \][/tex]
This transforms our equation into a linear relationship in terms of [tex]\( \ln(y) \)[/tex] and [tex]\( \ln(x) \)[/tex].
3. Fit the model: Using the transformed data, apply linear regression techniques or curve fitting to determine the best-fit parameters [tex]\( a \)[/tex] and [tex]\( b \)[/tex].
After applying these methods and calculations:
4. Solution: From the fitting process, the parameters are determined to be:
[tex]\[ a \approx 109.1 \quad \text{and} \quad b \approx -1.1 \][/tex]
Thus, the power regression model that best fits the provided data is:
[tex]\[ y \approx 109.1 \cdot x^{-1.1} \][/tex]
Finally, rounding these parameters to the nearest tenth, we have:
[tex]\[ a = 109.1 \quad \text{and} \quad b = -1.1 \][/tex]
So the model is:
[tex]\[ y = 109.1 \cdot x^{-1.1} \][/tex]
[tex]\[ \begin{array}{|c|c|c|c|c|c|c|} \hline x & 1 & 2 & 4 & 5 & 6 & 8 \\ \hline y & 112 & 41 & 28 & 31 & 18 & 8 \\ \hline \end{array} \][/tex]
Here are the steps to find the parameters [tex]\( a \)[/tex] and [tex]\( b \)[/tex]:
1. Define the power regression equation: [tex]\( y = a \cdot x^b \)[/tex].
2. Transform the data: One common approach to linearize the equation is to take the natural logarithm of both sides. Doing so, we get:
[tex]\[ \ln(y) = \ln(a) + b \ln(x) \][/tex]
This transforms our equation into a linear relationship in terms of [tex]\( \ln(y) \)[/tex] and [tex]\( \ln(x) \)[/tex].
3. Fit the model: Using the transformed data, apply linear regression techniques or curve fitting to determine the best-fit parameters [tex]\( a \)[/tex] and [tex]\( b \)[/tex].
After applying these methods and calculations:
4. Solution: From the fitting process, the parameters are determined to be:
[tex]\[ a \approx 109.1 \quad \text{and} \quad b \approx -1.1 \][/tex]
Thus, the power regression model that best fits the provided data is:
[tex]\[ y \approx 109.1 \cdot x^{-1.1} \][/tex]
Finally, rounding these parameters to the nearest tenth, we have:
[tex]\[ a = 109.1 \quad \text{and} \quad b = -1.1 \][/tex]
So the model is:
[tex]\[ y = 109.1 \cdot x^{-1.1} \][/tex]
Thank you for using this platform to share and learn. Keep asking and answering. We appreciate every contribution you make. Your search for answers ends at IDNLearn.com. Thank you for visiting, and we hope to assist you again soon.