Join IDNLearn.com and become part of a knowledge-sharing community that thrives on curiosity. Ask your questions and receive reliable and comprehensive answers from our dedicated community of professionals.
Sagot :
To determine the direction of the acceleration of the ball, we need to follow a series of steps that involve resolving the velocities into their components, calculating the accelerations in the x and y directions, and then determining the direction of the acceleration vector.
### Step 1: Calculate initial and final velocity components
Initial Velocity in Components:
Given:
- Initial velocity ([tex]\(v_i\)[/tex]) = 1.13 m/s
- Initial angle ([tex]\(\theta_i\)[/tex]) = -20.5°
To find the x and y components of the initial velocity ([tex]\(v_{ix}\)[/tex], [tex]\(v_{iy}\)[/tex]):
[tex]\[ v_{ix} = v_i \cos(\theta_i) \][/tex]
[tex]\[ v_{iy} = v_i \sin(\theta_i) \][/tex]
Using the values:
[tex]\[ v_{ix} = 1.13 \cos(-20.5°) = 1.058439573850689 \, \text{m/s} \][/tex]
[tex]\[ v_{iy} = 1.13 \sin(-20.5°) = -0.39573434082319814 \, \text{m/s} \][/tex]
Final Velocity in Components:
Given:
- Final velocity ([tex]\(v_f\)[/tex]) = 2.10 m/s
- Final angle ([tex]\(\theta_f\)[/tex]) = 142°
To find the x and y components of the final velocity ([tex]\(v_{fx}\)[/tex], [tex]\(v_{fy}\)[/tex]):
[tex]\[ v_{fx} = v_f \cos(\theta_f) \][/tex]
[tex]\[ v_{fy} = v_f \sin(\theta_f) \][/tex]
Using the values:
[tex]\[ v_{fx} = 2.10 \cos(142°) = -1.654822582574116 \, \text{m/s} \][/tex]
[tex]\[ v_{fy} = 2.10 \sin(142°) = 1.2928890981838828 \, \text{m/s} \][/tex]
### Step 2: Calculate the acceleration components
Given:
- Contact time ([tex]\(t\)[/tex]) = 0.25 s
The acceleration components ([tex]\(a_x\)[/tex], [tex]\(a_y\)[/tex]) can be calculated using the change in velocity over the contact time:
[tex]\[ a_x = \frac{v_{fx} - v_{ix}}{t} \][/tex]
[tex]\[ a_y = \frac{v_{fy} - v_{iy}}{t} \][/tex]
Using the values:
[tex]\[ a_x = \frac{-1.654822582574116 - 1.058439573850689}{0.25} = -10.85304862569922 \, \text{m/s}^2 \][/tex]
[tex]\[ a_y = \frac{1.2928890981838828 + 0.39573434082319814}{0.25} = 6.754493756028324 \, \text{m/s}^2 \][/tex]
### Step 3: Calculate the direction of the acceleration
The direction of the acceleration ([tex]\(\theta_a\)[/tex]) can be found using the arctangent function:
[tex]\[ \theta_a = \arctan \left(\frac{a_y}{a_x}\right) \][/tex]
Substitute the values:
[tex]\[ \theta_a = \arctan \left(\frac{6.754493756028324}{-10.85304862569922}\right) = \arctan(-0.622264331) = -32.311^\circ \][/tex]
Since the angle is negative, we add [tex]\(180^\circ\)[/tex] to ensure it falls within the conventional range for direction of acceleration:
[tex]\[ \theta_a + 180^\circ = -32.311^\circ + 180^\circ = 148.103^\circ \][/tex]
Therefore, the direction of the acceleration of the ball is:
[tex]\[ \boxed{148.103^\circ} \][/tex]
### Step 1: Calculate initial and final velocity components
Initial Velocity in Components:
Given:
- Initial velocity ([tex]\(v_i\)[/tex]) = 1.13 m/s
- Initial angle ([tex]\(\theta_i\)[/tex]) = -20.5°
To find the x and y components of the initial velocity ([tex]\(v_{ix}\)[/tex], [tex]\(v_{iy}\)[/tex]):
[tex]\[ v_{ix} = v_i \cos(\theta_i) \][/tex]
[tex]\[ v_{iy} = v_i \sin(\theta_i) \][/tex]
Using the values:
[tex]\[ v_{ix} = 1.13 \cos(-20.5°) = 1.058439573850689 \, \text{m/s} \][/tex]
[tex]\[ v_{iy} = 1.13 \sin(-20.5°) = -0.39573434082319814 \, \text{m/s} \][/tex]
Final Velocity in Components:
Given:
- Final velocity ([tex]\(v_f\)[/tex]) = 2.10 m/s
- Final angle ([tex]\(\theta_f\)[/tex]) = 142°
To find the x and y components of the final velocity ([tex]\(v_{fx}\)[/tex], [tex]\(v_{fy}\)[/tex]):
[tex]\[ v_{fx} = v_f \cos(\theta_f) \][/tex]
[tex]\[ v_{fy} = v_f \sin(\theta_f) \][/tex]
Using the values:
[tex]\[ v_{fx} = 2.10 \cos(142°) = -1.654822582574116 \, \text{m/s} \][/tex]
[tex]\[ v_{fy} = 2.10 \sin(142°) = 1.2928890981838828 \, \text{m/s} \][/tex]
### Step 2: Calculate the acceleration components
Given:
- Contact time ([tex]\(t\)[/tex]) = 0.25 s
The acceleration components ([tex]\(a_x\)[/tex], [tex]\(a_y\)[/tex]) can be calculated using the change in velocity over the contact time:
[tex]\[ a_x = \frac{v_{fx} - v_{ix}}{t} \][/tex]
[tex]\[ a_y = \frac{v_{fy} - v_{iy}}{t} \][/tex]
Using the values:
[tex]\[ a_x = \frac{-1.654822582574116 - 1.058439573850689}{0.25} = -10.85304862569922 \, \text{m/s}^2 \][/tex]
[tex]\[ a_y = \frac{1.2928890981838828 + 0.39573434082319814}{0.25} = 6.754493756028324 \, \text{m/s}^2 \][/tex]
### Step 3: Calculate the direction of the acceleration
The direction of the acceleration ([tex]\(\theta_a\)[/tex]) can be found using the arctangent function:
[tex]\[ \theta_a = \arctan \left(\frac{a_y}{a_x}\right) \][/tex]
Substitute the values:
[tex]\[ \theta_a = \arctan \left(\frac{6.754493756028324}{-10.85304862569922}\right) = \arctan(-0.622264331) = -32.311^\circ \][/tex]
Since the angle is negative, we add [tex]\(180^\circ\)[/tex] to ensure it falls within the conventional range for direction of acceleration:
[tex]\[ \theta_a + 180^\circ = -32.311^\circ + 180^\circ = 148.103^\circ \][/tex]
Therefore, the direction of the acceleration of the ball is:
[tex]\[ \boxed{148.103^\circ} \][/tex]
We appreciate your contributions to this forum. Don't forget to check back for the latest answers. Keep asking, answering, and sharing useful information. Thank you for visiting IDNLearn.com. We’re here to provide dependable answers, so visit us again soon.