Find expert answers and community insights on IDNLearn.com. Ask your questions and receive accurate, in-depth answers from our knowledgeable community members.
Sagot :
Certainly! Let's proceed step-by-step to solve through the given parts:
### Part (a)
#### Vertex of [tex]\( R(x) \)[/tex]
First, consider the revenue function:
[tex]\[ R(x) = -x^2 + 6x \][/tex]
This is a quadratic function in standard form [tex]\( ax^2 + bx + c \)[/tex], where [tex]\( a = -1 \)[/tex], [tex]\( b = 6 \)[/tex], and [tex]\( c = 0 \)[/tex].
The vertex of a parabola given by [tex]\( y = ax^2 + bx + c \)[/tex] is at:
[tex]\[ x = -\frac{b}{2a} \][/tex]
Substitute [tex]\( a = -1 \)[/tex] and [tex]\( b = 6 \)[/tex]:
[tex]\[ x = -\frac{6}{2(-1)} = 3 \][/tex]
Now, find the corresponding [tex]\( y \)[/tex]-value (which is [tex]\( R(3) \)[/tex]):
[tex]\[ R(3) = -3^2 + 6(3) = -9 + 18 = 9 \][/tex]
So, the vertex of [tex]\( R(x) \)[/tex] is at:
[tex]\[ (3, 9) \][/tex]
#### y-intercept of [tex]\( C(x) \)[/tex]
Consider the cost function:
[tex]\[ C(x) = x + 4 \][/tex]
The [tex]\( y \)[/tex]-intercept occurs when [tex]\( x = 0 \)[/tex]:
[tex]\[ C(0) = 0 + 4 = 4 \][/tex]
So, the y-intercept of [tex]\( C(x) \)[/tex] is at [tex]\( y = 4 \)[/tex].
### Part (b)
#### Finding the Minimum Break-even Quantity
To find the break-even quantity, we need to determine the [tex]\( x \)[/tex]-values where the revenue [tex]\( R(x) \)[/tex] equals the cost [tex]\( C(x) \)[/tex]. Therefore, we set
[tex]\[ R(x) = C(x) \][/tex]
Using the given functions:
[tex]\[ -x^2 + 6x = x + 4 \][/tex]
This needs to be solved for [tex]\( x \)[/tex]. Simplify by moving all terms to one side of the equation:
[tex]\[ -x^2 + 6x - x - 4 = 0 \][/tex]
[tex]\[ -x^2 + 5x - 4 = 0 \][/tex]
Now, solve this quadratic equation:
[tex]\[ x^2 - 5x + 4 = 0 \][/tex]
Solve using the quadratic formula [tex]\( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \)[/tex], where [tex]\( a = 1 \)[/tex], [tex]\( b = -5 \)[/tex], and [tex]\( c = 4 \)[/tex]:
[tex]\[ x = \frac{-(-5) \pm \sqrt{(-5)^2 - 4 \cdot 1 \cdot 4}}{2 \cdot 1} \][/tex]
[tex]\[ x = \frac{5 \pm \sqrt{25 - 16}}{2} \][/tex]
[tex]\[ x = \frac{5 \pm \sqrt{9}}{2} \][/tex]
[tex]\[ x = \frac{5 \pm 3}{2} \][/tex]
This gives us two solutions:
[tex]\[ x = \frac{5 + 3}{2} = 4 \][/tex]
[tex]\[ x = \frac{5 - 3}{2} = 1 \][/tex]
Thus, the break-even quantities where the revenue equals the cost are [tex]\( x = 4 \)[/tex] and [tex]\( x = 1 \)[/tex].
However, the minimum break-even quantity is the smallest [tex]\( x \)[/tex] value where this occurs, which is [tex]\( x = 1 \)[/tex].
Therefore, the minimum break-even quantity is:
[tex]\[ \boxed{1} \][/tex]
If any additional parts are required to graph the functions, use the identified critical points and general shapes of the parabola (concave down for [tex]\( R(x) \)[/tex]) and the linear function [tex]\( C(x) \)[/tex]. But primarily, the break-even analysis accurately identifies the minimum value where costs and revenues intersect.
### Part (a)
#### Vertex of [tex]\( R(x) \)[/tex]
First, consider the revenue function:
[tex]\[ R(x) = -x^2 + 6x \][/tex]
This is a quadratic function in standard form [tex]\( ax^2 + bx + c \)[/tex], where [tex]\( a = -1 \)[/tex], [tex]\( b = 6 \)[/tex], and [tex]\( c = 0 \)[/tex].
The vertex of a parabola given by [tex]\( y = ax^2 + bx + c \)[/tex] is at:
[tex]\[ x = -\frac{b}{2a} \][/tex]
Substitute [tex]\( a = -1 \)[/tex] and [tex]\( b = 6 \)[/tex]:
[tex]\[ x = -\frac{6}{2(-1)} = 3 \][/tex]
Now, find the corresponding [tex]\( y \)[/tex]-value (which is [tex]\( R(3) \)[/tex]):
[tex]\[ R(3) = -3^2 + 6(3) = -9 + 18 = 9 \][/tex]
So, the vertex of [tex]\( R(x) \)[/tex] is at:
[tex]\[ (3, 9) \][/tex]
#### y-intercept of [tex]\( C(x) \)[/tex]
Consider the cost function:
[tex]\[ C(x) = x + 4 \][/tex]
The [tex]\( y \)[/tex]-intercept occurs when [tex]\( x = 0 \)[/tex]:
[tex]\[ C(0) = 0 + 4 = 4 \][/tex]
So, the y-intercept of [tex]\( C(x) \)[/tex] is at [tex]\( y = 4 \)[/tex].
### Part (b)
#### Finding the Minimum Break-even Quantity
To find the break-even quantity, we need to determine the [tex]\( x \)[/tex]-values where the revenue [tex]\( R(x) \)[/tex] equals the cost [tex]\( C(x) \)[/tex]. Therefore, we set
[tex]\[ R(x) = C(x) \][/tex]
Using the given functions:
[tex]\[ -x^2 + 6x = x + 4 \][/tex]
This needs to be solved for [tex]\( x \)[/tex]. Simplify by moving all terms to one side of the equation:
[tex]\[ -x^2 + 6x - x - 4 = 0 \][/tex]
[tex]\[ -x^2 + 5x - 4 = 0 \][/tex]
Now, solve this quadratic equation:
[tex]\[ x^2 - 5x + 4 = 0 \][/tex]
Solve using the quadratic formula [tex]\( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \)[/tex], where [tex]\( a = 1 \)[/tex], [tex]\( b = -5 \)[/tex], and [tex]\( c = 4 \)[/tex]:
[tex]\[ x = \frac{-(-5) \pm \sqrt{(-5)^2 - 4 \cdot 1 \cdot 4}}{2 \cdot 1} \][/tex]
[tex]\[ x = \frac{5 \pm \sqrt{25 - 16}}{2} \][/tex]
[tex]\[ x = \frac{5 \pm \sqrt{9}}{2} \][/tex]
[tex]\[ x = \frac{5 \pm 3}{2} \][/tex]
This gives us two solutions:
[tex]\[ x = \frac{5 + 3}{2} = 4 \][/tex]
[tex]\[ x = \frac{5 - 3}{2} = 1 \][/tex]
Thus, the break-even quantities where the revenue equals the cost are [tex]\( x = 4 \)[/tex] and [tex]\( x = 1 \)[/tex].
However, the minimum break-even quantity is the smallest [tex]\( x \)[/tex] value where this occurs, which is [tex]\( x = 1 \)[/tex].
Therefore, the minimum break-even quantity is:
[tex]\[ \boxed{1} \][/tex]
If any additional parts are required to graph the functions, use the identified critical points and general shapes of the parabola (concave down for [tex]\( R(x) \)[/tex]) and the linear function [tex]\( C(x) \)[/tex]. But primarily, the break-even analysis accurately identifies the minimum value where costs and revenues intersect.
We appreciate your participation in this forum. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. Thank you for visiting IDNLearn.com. We’re here to provide clear and concise answers, so visit us again soon.