Get the most out of your questions with the extensive resources available on IDNLearn.com. Find the answers you need quickly and accurately with help from our knowledgeable and dedicated community members.
Sagot :
Let's first address how to solve each part of the question in detail.
### (c) Finding the Maximum Revenue
To identify how to find the maximum revenue, you need to understand the behavior of the revenue function [tex]\( R(x) \)[/tex]. Given that [tex]\( R(x) = -x^2 + 6x \)[/tex], you can see that it is a quadratic function opening downwards (because the coefficient of [tex]\( x^2 \)[/tex] is negative). The maximum value of a downward-opening parabola occurs at its vertex.
The necessary step to find this maximum is by determining the vertex of the parabola.
#### How can the maximum revenue be found?
- Option A: Find the maximum [tex]\( y \)[/tex]-coordinate of a point where [tex]\( R(x) = C(x) \)[/tex].
This option is incorrect because it relates to the point where revenue equals cost, not where revenue is maximized.
- Option B: Find the [tex]\( y \)[/tex]-intercept of [tex]\( R(x) \)[/tex].
The [tex]\( y \)[/tex]-intercept is simply where [tex]\( x = 0 \)[/tex], which does not give the maximum value for the quadratic function.
- Option C: Find the [tex]\( y \)[/tex]-coordinate of the vertex of [tex]\( R(x) \)[/tex].
This option is correct because for a quadratic function [tex]\( ax^2 + bx + c \)[/tex] the maximum or minimum value (depending on the opening direction) is at the vertex.
- Option D: Find the [tex]\( x \)[/tex]-coordinate of the vertex of [tex]\( R(x) \)[/tex].
This option is partly correct as it finds where the maximum occurs, but does not give the actual maximum revenue, which is the [tex]\( y \)[/tex]-coordinate of the vertex.
Thus, the correct choice is C. The maximum revenue is the [tex]\( y \)[/tex]-coordinate of the vertex of [tex]\( R(x) \)[/tex], calculated as follows:
[tex]\[ x = -\frac{b}{2a} \][/tex]
where [tex]\( a = -1 \)[/tex] and [tex]\( b = 6 \)[/tex]:
[tex]\[ x = -\frac{6}{2 \times -1} = 3 \][/tex]
Substitute [tex]\( x = 3 \)[/tex] back into [tex]\( R(x) \)[/tex] to find the maximum revenue:
[tex]\[ R(3) = -3^2 + 6 \cdot 3 = -9 + 18 = 9 \text{ (in thousands of dollars)} \][/tex]
[tex]\[ \text{So, the maximum revenue is } 9 \times 1000 = 9000 \text{ dollars.} \][/tex]
### (d) Finding the Maximum Profit
To find the maximum profit [tex]\( P(x) \)[/tex], you first need to define the profit function [tex]\( P(x) \)[/tex] in terms of [tex]\( R(x) \)[/tex] and [tex]\( C(x) \)[/tex]:
[tex]\[ P(x) = R(x) - C(x) \][/tex]
Given:
[tex]\[ R(x) = -x^2 + 6x \][/tex]
[tex]\[ C(x) = x + 4 \][/tex]
The profit function [tex]\( P(x) \)[/tex] becomes:
[tex]\[ P(x) = (-x^2 + 6x) - (x + 4) \][/tex]
[tex]\[ P(x) = -x^2 + 6x - x - 4 \][/tex]
[tex]\[ P(x) = -x^2 + 5x - 4 \][/tex]
To find the maximum profit, again, find the vertex of the quadratic profit function:
[tex]\[ x = -\frac{b}{2a} = -\frac{5}{2 \times -1} = \frac{5}{2} \][/tex]
Substitute [tex]\( x = \frac{5}{2} \)[/tex] back into [tex]\( P(x) \)[/tex]:
[tex]\[ P\left( \frac{5}{2} \right) = -\left( \frac{5}{2} \right)^2 + 5 \cdot \frac{5}{2} - 4 \][/tex]
[tex]\[ P\left( \frac{5}{2} \right) = -\frac{25}{4} + \frac{25}{2} - 4 \][/tex]
[tex]\[ P\left( \frac{5}{2} \right) = -\frac{25}{4} + \frac{50}{4} - \frac{16}{4} \][/tex]
[tex]\[ P\left( \frac{5}{2} \right) = \frac{50 - 25 - 16}{4} \][/tex]
[tex]\[ P\left( \frac{5}{2} \right) = \frac{9}{4} \approx 2.25 \][/tex]
Therefore, the maximum profit is approximately:
[tex]\[ 2 \times 1000 = 2000 \text{ dollars (in thousands) } \][/tex]
So, the maximum profit is [tex]\( 2 \times 1000 = 2000 \)[/tex] dollars.
### (c) Finding the Maximum Revenue
To identify how to find the maximum revenue, you need to understand the behavior of the revenue function [tex]\( R(x) \)[/tex]. Given that [tex]\( R(x) = -x^2 + 6x \)[/tex], you can see that it is a quadratic function opening downwards (because the coefficient of [tex]\( x^2 \)[/tex] is negative). The maximum value of a downward-opening parabola occurs at its vertex.
The necessary step to find this maximum is by determining the vertex of the parabola.
#### How can the maximum revenue be found?
- Option A: Find the maximum [tex]\( y \)[/tex]-coordinate of a point where [tex]\( R(x) = C(x) \)[/tex].
This option is incorrect because it relates to the point where revenue equals cost, not where revenue is maximized.
- Option B: Find the [tex]\( y \)[/tex]-intercept of [tex]\( R(x) \)[/tex].
The [tex]\( y \)[/tex]-intercept is simply where [tex]\( x = 0 \)[/tex], which does not give the maximum value for the quadratic function.
- Option C: Find the [tex]\( y \)[/tex]-coordinate of the vertex of [tex]\( R(x) \)[/tex].
This option is correct because for a quadratic function [tex]\( ax^2 + bx + c \)[/tex] the maximum or minimum value (depending on the opening direction) is at the vertex.
- Option D: Find the [tex]\( x \)[/tex]-coordinate of the vertex of [tex]\( R(x) \)[/tex].
This option is partly correct as it finds where the maximum occurs, but does not give the actual maximum revenue, which is the [tex]\( y \)[/tex]-coordinate of the vertex.
Thus, the correct choice is C. The maximum revenue is the [tex]\( y \)[/tex]-coordinate of the vertex of [tex]\( R(x) \)[/tex], calculated as follows:
[tex]\[ x = -\frac{b}{2a} \][/tex]
where [tex]\( a = -1 \)[/tex] and [tex]\( b = 6 \)[/tex]:
[tex]\[ x = -\frac{6}{2 \times -1} = 3 \][/tex]
Substitute [tex]\( x = 3 \)[/tex] back into [tex]\( R(x) \)[/tex] to find the maximum revenue:
[tex]\[ R(3) = -3^2 + 6 \cdot 3 = -9 + 18 = 9 \text{ (in thousands of dollars)} \][/tex]
[tex]\[ \text{So, the maximum revenue is } 9 \times 1000 = 9000 \text{ dollars.} \][/tex]
### (d) Finding the Maximum Profit
To find the maximum profit [tex]\( P(x) \)[/tex], you first need to define the profit function [tex]\( P(x) \)[/tex] in terms of [tex]\( R(x) \)[/tex] and [tex]\( C(x) \)[/tex]:
[tex]\[ P(x) = R(x) - C(x) \][/tex]
Given:
[tex]\[ R(x) = -x^2 + 6x \][/tex]
[tex]\[ C(x) = x + 4 \][/tex]
The profit function [tex]\( P(x) \)[/tex] becomes:
[tex]\[ P(x) = (-x^2 + 6x) - (x + 4) \][/tex]
[tex]\[ P(x) = -x^2 + 6x - x - 4 \][/tex]
[tex]\[ P(x) = -x^2 + 5x - 4 \][/tex]
To find the maximum profit, again, find the vertex of the quadratic profit function:
[tex]\[ x = -\frac{b}{2a} = -\frac{5}{2 \times -1} = \frac{5}{2} \][/tex]
Substitute [tex]\( x = \frac{5}{2} \)[/tex] back into [tex]\( P(x) \)[/tex]:
[tex]\[ P\left( \frac{5}{2} \right) = -\left( \frac{5}{2} \right)^2 + 5 \cdot \frac{5}{2} - 4 \][/tex]
[tex]\[ P\left( \frac{5}{2} \right) = -\frac{25}{4} + \frac{25}{2} - 4 \][/tex]
[tex]\[ P\left( \frac{5}{2} \right) = -\frac{25}{4} + \frac{50}{4} - \frac{16}{4} \][/tex]
[tex]\[ P\left( \frac{5}{2} \right) = \frac{50 - 25 - 16}{4} \][/tex]
[tex]\[ P\left( \frac{5}{2} \right) = \frac{9}{4} \approx 2.25 \][/tex]
Therefore, the maximum profit is approximately:
[tex]\[ 2 \times 1000 = 2000 \text{ dollars (in thousands) } \][/tex]
So, the maximum profit is [tex]\( 2 \times 1000 = 2000 \)[/tex] dollars.
Thank you for contributing to our discussion. Don't forget to check back for new answers. Keep asking, answering, and sharing useful information. IDNLearn.com is your reliable source for accurate answers. Thank you for visiting, and we hope to assist you again.