Connect with knowledgeable experts and enthusiasts on IDNLearn.com. Ask your questions and receive comprehensive and trustworthy answers from our experienced community of professionals.

Select the correct answer.

The electric force between a charged foam cup and a positively charged metal sphere is 2.12 newtons. If the charge on the cup is [tex]$2.0 \times 10^{-6}$[/tex] coulombs and the charge on the metal sphere is [tex]$2.5 \times 10^{-6}$[/tex] coulombs, what is the distance between the two? ([tex][tex]$k=9.0 \times 10^9$[/tex][/tex] newton-meter [tex]${ }^2$/coulombs [tex]${ }^2$[/tex])

A. [tex]$9.0 \times 10^{-1}$[/tex] meters
B. [tex][tex]$6.4 \times 10^{-1}$[/tex][/tex] meters
C. [tex]$3.8 \times 10^{-1}$[/tex] meters
D. [tex]$2.8 \times 10^{-1}$[/tex] meters
E. [tex][tex]$1.5 \times 10^{-1}$[/tex][/tex] meters


Sagot :

To determine the distance between a charged foam cup with a charge of [tex]\( 2.0 \times 10^{-6} \)[/tex] coulombs and a positively charged metal sphere with a charge of [tex]\( 2.5 \times 10^{-6} \)[/tex] coulombs, given that the electric force between them is 2.12 newtons, and using Coulomb's constant [tex]\( k = 9.0 \times 10^9 \)[/tex] newton-meter²/coulombs², we use Coulomb's law:

[tex]\[ F = k \frac{q_1 q_2}{r^2} \][/tex]

where:
- [tex]\( F \)[/tex] is the force between the charges,
- [tex]\( q_1 \)[/tex] and [tex]\( q_2 \)[/tex] are the magnitudes of the two charges,
- [tex]\( r \)[/tex] is the distance between the centers of the two charges.

Given:
- [tex]\( F = 2.12 \)[/tex] newtons,
- [tex]\( q_1 = 2.0 \times 10^{-6} \)[/tex] coulombs,
- [tex]\( q_2 = 2.5 \times 10^{-6} \)[/tex] coulombs,
- [tex]\( k = 9.0 \times 10^9 \)[/tex] newton-meter²/coulombs².

We need to find [tex]\( r \)[/tex], the distance between the charges.

Rearranging Coulomb's law to solve for [tex]\( r \)[/tex]:

[tex]\[ r^2 = k \frac{q_1 q_2}{F} \][/tex]

Substituting the given values:

[tex]\[ r^2 = 9.0 \times 10^9 \frac{(2.0 \times 10^{-6})(2.5 \times 10^{-6})}{2.12} \][/tex]

[tex]\[ r^2 = 9.0 \times 10^9 \frac{5.0 \times 10^{-12}}{2.12} \][/tex]

[tex]\[ r^2 = 9.0 \times 10^9 \times \frac{5.0 \times 10^{-12}}{2.12} \][/tex]

[tex]\[ r^2 = 9.0 \times 10^{-6} \times \frac{5.0}{2.12} \][/tex]

[tex]\[ r^2 = 9 \times 10^{3} \times 2.35849 \times 10^{-3} \][/tex]

[tex]\[ r^2 = 21.227 \times 10^{-6} \][/tex]

[tex]\[ r \approx \sqrt{0.022227} \][/tex]

[tex]\[ r \approx 0.1457 \][/tex]

The resulting distance is approximately 0.1457 meters, which corresponds most closely to option E: [tex]\( 1.5 \times 10^{-1} \)[/tex] meters.

Thus, the correct answer is:

E. [tex]\( 1.5 \times 10^{-1} \)[/tex] meters