Get detailed and accurate responses to your questions on IDNLearn.com. Discover reliable and timely information on any topic from our network of experienced professionals.
Sagot :
To determine the distance between a charged foam cup with a charge of [tex]\( 2.0 \times 10^{-6} \)[/tex] coulombs and a positively charged metal sphere with a charge of [tex]\( 2.5 \times 10^{-6} \)[/tex] coulombs, given that the electric force between them is 2.12 newtons, and using Coulomb's constant [tex]\( k = 9.0 \times 10^9 \)[/tex] newton-meter²/coulombs², we use Coulomb's law:
[tex]\[ F = k \frac{q_1 q_2}{r^2} \][/tex]
where:
- [tex]\( F \)[/tex] is the force between the charges,
- [tex]\( q_1 \)[/tex] and [tex]\( q_2 \)[/tex] are the magnitudes of the two charges,
- [tex]\( r \)[/tex] is the distance between the centers of the two charges.
Given:
- [tex]\( F = 2.12 \)[/tex] newtons,
- [tex]\( q_1 = 2.0 \times 10^{-6} \)[/tex] coulombs,
- [tex]\( q_2 = 2.5 \times 10^{-6} \)[/tex] coulombs,
- [tex]\( k = 9.0 \times 10^9 \)[/tex] newton-meter²/coulombs².
We need to find [tex]\( r \)[/tex], the distance between the charges.
Rearranging Coulomb's law to solve for [tex]\( r \)[/tex]:
[tex]\[ r^2 = k \frac{q_1 q_2}{F} \][/tex]
Substituting the given values:
[tex]\[ r^2 = 9.0 \times 10^9 \frac{(2.0 \times 10^{-6})(2.5 \times 10^{-6})}{2.12} \][/tex]
[tex]\[ r^2 = 9.0 \times 10^9 \frac{5.0 \times 10^{-12}}{2.12} \][/tex]
[tex]\[ r^2 = 9.0 \times 10^9 \times \frac{5.0 \times 10^{-12}}{2.12} \][/tex]
[tex]\[ r^2 = 9.0 \times 10^{-6} \times \frac{5.0}{2.12} \][/tex]
[tex]\[ r^2 = 9 \times 10^{3} \times 2.35849 \times 10^{-3} \][/tex]
[tex]\[ r^2 = 21.227 \times 10^{-6} \][/tex]
[tex]\[ r \approx \sqrt{0.022227} \][/tex]
[tex]\[ r \approx 0.1457 \][/tex]
The resulting distance is approximately 0.1457 meters, which corresponds most closely to option E: [tex]\( 1.5 \times 10^{-1} \)[/tex] meters.
Thus, the correct answer is:
E. [tex]\( 1.5 \times 10^{-1} \)[/tex] meters
[tex]\[ F = k \frac{q_1 q_2}{r^2} \][/tex]
where:
- [tex]\( F \)[/tex] is the force between the charges,
- [tex]\( q_1 \)[/tex] and [tex]\( q_2 \)[/tex] are the magnitudes of the two charges,
- [tex]\( r \)[/tex] is the distance between the centers of the two charges.
Given:
- [tex]\( F = 2.12 \)[/tex] newtons,
- [tex]\( q_1 = 2.0 \times 10^{-6} \)[/tex] coulombs,
- [tex]\( q_2 = 2.5 \times 10^{-6} \)[/tex] coulombs,
- [tex]\( k = 9.0 \times 10^9 \)[/tex] newton-meter²/coulombs².
We need to find [tex]\( r \)[/tex], the distance between the charges.
Rearranging Coulomb's law to solve for [tex]\( r \)[/tex]:
[tex]\[ r^2 = k \frac{q_1 q_2}{F} \][/tex]
Substituting the given values:
[tex]\[ r^2 = 9.0 \times 10^9 \frac{(2.0 \times 10^{-6})(2.5 \times 10^{-6})}{2.12} \][/tex]
[tex]\[ r^2 = 9.0 \times 10^9 \frac{5.0 \times 10^{-12}}{2.12} \][/tex]
[tex]\[ r^2 = 9.0 \times 10^9 \times \frac{5.0 \times 10^{-12}}{2.12} \][/tex]
[tex]\[ r^2 = 9.0 \times 10^{-6} \times \frac{5.0}{2.12} \][/tex]
[tex]\[ r^2 = 9 \times 10^{3} \times 2.35849 \times 10^{-3} \][/tex]
[tex]\[ r^2 = 21.227 \times 10^{-6} \][/tex]
[tex]\[ r \approx \sqrt{0.022227} \][/tex]
[tex]\[ r \approx 0.1457 \][/tex]
The resulting distance is approximately 0.1457 meters, which corresponds most closely to option E: [tex]\( 1.5 \times 10^{-1} \)[/tex] meters.
Thus, the correct answer is:
E. [tex]\( 1.5 \times 10^{-1} \)[/tex] meters
We value your presence here. Keep sharing knowledge and helping others find the answers they need. This community is the perfect place to learn together. Discover the answers you need at IDNLearn.com. Thank you for visiting, and we hope to see you again for more solutions.