IDNLearn.com provides a collaborative environment for finding accurate answers. Join our knowledgeable community and access a wealth of reliable answers to your most pressing questions.
Sagot :
To determine the solubility product constant [tex]\( K_{sp} \)[/tex] for [tex]\(\text{PbCl}_2(s)\)[/tex], we need to use the given standard free energies of formation ([tex]\(\Delta G_f^\circ\)[/tex]) for [tex]\( \text{Pb}^{2+}(aq) \)[/tex] and [tex]\( \text{Cl}^{-}(aq) \)[/tex].
### Steps to Find [tex]\( \Delta G \)[/tex] for the Dissolution Reaction
1. Write-down the dissolution reaction of [tex]\(\text{PbCl}_2(s)\)[/tex]:
[tex]\[ \text{PbCl}_2(s) \rightleftharpoons \text{Pb}^{2+}(aq) + 2\text{Cl}^{-}(aq) \][/tex]
2. Given Data:
- [tex]\(\Delta G_f^\circ\)[/tex] for [tex]\(\text{Pb}^{2+}(aq)\)[/tex] is [tex]\(-24.3 \, \text{kJ/mol}\)[/tex]
- [tex]\(\Delta G_f^\circ\)[/tex] for [tex]\(\text{Cl}^{-}(aq)\)[/tex] is [tex]\(-131.2 \, \text{kJ/mol}\)[/tex]
3. Calculate [tex]\(\Delta G_{reaction}\)[/tex]:
The standard free energy change for the reaction ([tex]\(\Delta G_{reaction}\)[/tex]) is given by:
[tex]\[ \Delta G_{reaction} = \Delta G_f^\circ(\text{Pb}^{2+}) + 2 \cdot \Delta G_f^\circ(\text{Cl}^{-}) \][/tex]
Substituting the given values:
[tex]\[ \Delta G_{reaction} = (-24.3 \, \text{kJ/mol}) + 2 \cdot (-131.2 \, \text{kJ/mol}) \][/tex]
[tex]\[ \Delta G_{reaction} = -24.3 \, \text{kJ/mol} + (-262.4 \, \text{kJ/mol}) \][/tex]
[tex]\[ \Delta G_{reaction} = -286.7 \, \text{kJ/mol} \][/tex]
4. Converting [tex]\(\Delta G_{reaction}\)[/tex] from kJ to J:
[tex]\[ -286.7 \, \text{kJ/mol} \times 1000 \, \text{J/kJ} = -286700 \, \text{J/mol} \][/tex]
### Linking [tex]\(\Delta G_{reaction}\)[/tex] to [tex]\(K_{sp}\)[/tex]
5. The relationship between [tex]\(\Delta G_{reaction}\)[/tex] and [tex]\(K_{sp}\)[/tex] is given by the equation:
[tex]\[ \Delta G_{reaction} = RT \ln K_{sp} \][/tex]
where:
- [tex]\(R\)[/tex] is the universal gas constant ([tex]\(8.314 \, \text{J/(mol·K)}\)[/tex])
- [tex]\(T\)[/tex] is the temperature in Kelvin (Assuming standard temperature [tex]\(T = 298 \, \text{K}\)[/tex])
6. Rearranging to solve for [tex]\(K_{sp}\)[/tex]:
[tex]\[ \ln K_{sp} = \frac{\Delta G_{reaction}}{-RT} \][/tex]
[tex]\[ \ln K_{sp} = \frac{-286700 \, \text{J/mol}}{-8.314 \, \text{J/(mol·K)} \times 298 \, \text{K}} \][/tex]
[tex]\[ \ln K_{sp} = \frac{-286700}{-2476.172} \approx 115.76 \][/tex]
7. Exponentiating both sides to find [tex]\(K_{sp}\)[/tex]:
[tex]\[ K_{sp} = e^{\ln K_{sp}} = e^{115.76} \][/tex]
[tex]\[ K_{sp} \approx 1.80 \times 10^{50} \][/tex]
### Final Answer
The solubility product constant [tex]\(K_{sp}\)[/tex] for [tex]\( \text{PbCl}_2(s) \)[/tex] is approximately:
[tex]\[ K_{sp} \approx 1.80 \times 10^{50} \][/tex]
### Steps to Find [tex]\( \Delta G \)[/tex] for the Dissolution Reaction
1. Write-down the dissolution reaction of [tex]\(\text{PbCl}_2(s)\)[/tex]:
[tex]\[ \text{PbCl}_2(s) \rightleftharpoons \text{Pb}^{2+}(aq) + 2\text{Cl}^{-}(aq) \][/tex]
2. Given Data:
- [tex]\(\Delta G_f^\circ\)[/tex] for [tex]\(\text{Pb}^{2+}(aq)\)[/tex] is [tex]\(-24.3 \, \text{kJ/mol}\)[/tex]
- [tex]\(\Delta G_f^\circ\)[/tex] for [tex]\(\text{Cl}^{-}(aq)\)[/tex] is [tex]\(-131.2 \, \text{kJ/mol}\)[/tex]
3. Calculate [tex]\(\Delta G_{reaction}\)[/tex]:
The standard free energy change for the reaction ([tex]\(\Delta G_{reaction}\)[/tex]) is given by:
[tex]\[ \Delta G_{reaction} = \Delta G_f^\circ(\text{Pb}^{2+}) + 2 \cdot \Delta G_f^\circ(\text{Cl}^{-}) \][/tex]
Substituting the given values:
[tex]\[ \Delta G_{reaction} = (-24.3 \, \text{kJ/mol}) + 2 \cdot (-131.2 \, \text{kJ/mol}) \][/tex]
[tex]\[ \Delta G_{reaction} = -24.3 \, \text{kJ/mol} + (-262.4 \, \text{kJ/mol}) \][/tex]
[tex]\[ \Delta G_{reaction} = -286.7 \, \text{kJ/mol} \][/tex]
4. Converting [tex]\(\Delta G_{reaction}\)[/tex] from kJ to J:
[tex]\[ -286.7 \, \text{kJ/mol} \times 1000 \, \text{J/kJ} = -286700 \, \text{J/mol} \][/tex]
### Linking [tex]\(\Delta G_{reaction}\)[/tex] to [tex]\(K_{sp}\)[/tex]
5. The relationship between [tex]\(\Delta G_{reaction}\)[/tex] and [tex]\(K_{sp}\)[/tex] is given by the equation:
[tex]\[ \Delta G_{reaction} = RT \ln K_{sp} \][/tex]
where:
- [tex]\(R\)[/tex] is the universal gas constant ([tex]\(8.314 \, \text{J/(mol·K)}\)[/tex])
- [tex]\(T\)[/tex] is the temperature in Kelvin (Assuming standard temperature [tex]\(T = 298 \, \text{K}\)[/tex])
6. Rearranging to solve for [tex]\(K_{sp}\)[/tex]:
[tex]\[ \ln K_{sp} = \frac{\Delta G_{reaction}}{-RT} \][/tex]
[tex]\[ \ln K_{sp} = \frac{-286700 \, \text{J/mol}}{-8.314 \, \text{J/(mol·K)} \times 298 \, \text{K}} \][/tex]
[tex]\[ \ln K_{sp} = \frac{-286700}{-2476.172} \approx 115.76 \][/tex]
7. Exponentiating both sides to find [tex]\(K_{sp}\)[/tex]:
[tex]\[ K_{sp} = e^{\ln K_{sp}} = e^{115.76} \][/tex]
[tex]\[ K_{sp} \approx 1.80 \times 10^{50} \][/tex]
### Final Answer
The solubility product constant [tex]\(K_{sp}\)[/tex] for [tex]\( \text{PbCl}_2(s) \)[/tex] is approximately:
[tex]\[ K_{sp} \approx 1.80 \times 10^{50} \][/tex]
We appreciate your participation in this forum. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. Thanks for visiting IDNLearn.com. We’re dedicated to providing clear answers, so visit us again for more helpful information.