Connect with knowledgeable individuals and find the best answers at IDNLearn.com. Explore thousands of verified answers from experts and find the solutions you need, no matter the topic.
Sagot :
To address the given question, let's carefully examine the growth of three functions: [tex]\( y_1 = 2x \)[/tex], [tex]\( y_2 = 2x^2 \)[/tex], and [tex]\( y_3 = 2^x \)[/tex]. Our aim is to determine the [tex]\( y \)[/tex]-value at which the exponential function [tex]\( y_3 \)[/tex] surpasses the linear function [tex]\( y_1 \)[/tex] and the quadratic function [tex]\( y_2 \)[/tex], and to identify which of these functions grows the fastest.
### Comparison with the Linear Function [tex]\( y_1 = 2x \)[/tex]
First, we compare the exponential function [tex]\( y_3 = 2^x \)[/tex] with the linear function [tex]\( y_1 = 2x \)[/tex].
- At [tex]\( x = 0 \)[/tex]:
[tex]\[ y_1 = 2 \cdot 0 = 0 \quad \text{and} \quad y_3 = 2^0 = 1 \][/tex]
Here, [tex]\( y_3 = 1 \)[/tex] when [tex]\( y_1 = 0 \)[/tex].
- Increase [tex]\( x \)[/tex] incrementally, we reach [tex]\( x = 1 \)[/tex]:
[tex]\[ y_1 = 2 \cdot 1 = 2 \quad \text{and} \quad y_3 = 2^1 = 2 \][/tex]
Here, [tex]\( y_3 = 2 \)[/tex], matching [tex]\( y_1 \)[/tex].
Continuing this process, the exponential function starts growing faster. The exponential function [tex]\( y_3 \)[/tex] surpasses the linear function [tex]\( y_1 \)[/tex] immediately after this point. Therefore, the [tex]\( y \)[/tex]-value at which [tex]\( y_3 \)[/tex] surpasses [tex]\( y_1 \)[/tex] as we increase [tex]\( x \)[/tex] is:
[tex]\[ \boxed{1} \][/tex]
### Comparison with the Quadratic Function [tex]\( y_2 = 2x^2 \)[/tex]
Next, we compare the exponential function [tex]\( y_3 = 2^x \)[/tex] with the quadratic function [tex]\( y_2 = 2x^2 \)[/tex].
- At [tex]\( x = 0 \)[/tex]:
[tex]\[ y_2 = 2 \cdot 0^2 = 0 \quad \text{and} \quad y_3 = 2^0 = 1 \][/tex]
Here, [tex]\( y_3 = 1 \)[/tex] when [tex]\( y_2 = 0 \)[/tex].
- Increase [tex]\( x \)[/tex] incrementally, we reach [tex]\( x = 1 \)[/tex]:
[tex]\[ y_2 = 2 \cdot 1^2 = 2 \quad \text{and} \quad y_3 = 2^1 = 2 \][/tex]
Here, [tex]\( y_3 = 2 \)[/tex], matching [tex]\( y_2 \)[/tex].
As the values of [tex]\( x \)[/tex] increase further, the exponential function [tex]\( y_3 \)[/tex] starts to surpass the quadratic function [tex]\( y_2 \)[/tex]. Therefore, the [tex]\( y \)[/tex]-value at which [tex]\( y_3 \)[/tex] surpasses [tex]\( y_2 \)[/tex] immediately after this point is:
[tex]\[ \boxed{1} \][/tex]
### Identifying the Fastest Growing Function
Among the three functions [tex]\( y_1 = 2x \)[/tex], [tex]\( y_2 = 2x^2 \)[/tex], and [tex]\( y_3 = 2^x \)[/tex], the exponential function grows the fastest. This is because exponential growth increases more rapidly than both linear and quadratic growth as [tex]\( x \)[/tex] increases.
Thus, the function that grows the fastest is:
[tex]\[ \boxed{\text{the exponential function}} \][/tex]
In summary:
- The exponential function [tex]\( y_3 \)[/tex] surpasses the linear function [tex]\( y_1 \)[/tex] at [tex]\( y = 1 \)[/tex].
- The exponential function [tex]\( y_3 \)[/tex] surpasses the quadratic function [tex]\( y_2 \)[/tex] at [tex]\( y = 1 \)[/tex].
- The exponential function grows the fastest.
### Comparison with the Linear Function [tex]\( y_1 = 2x \)[/tex]
First, we compare the exponential function [tex]\( y_3 = 2^x \)[/tex] with the linear function [tex]\( y_1 = 2x \)[/tex].
- At [tex]\( x = 0 \)[/tex]:
[tex]\[ y_1 = 2 \cdot 0 = 0 \quad \text{and} \quad y_3 = 2^0 = 1 \][/tex]
Here, [tex]\( y_3 = 1 \)[/tex] when [tex]\( y_1 = 0 \)[/tex].
- Increase [tex]\( x \)[/tex] incrementally, we reach [tex]\( x = 1 \)[/tex]:
[tex]\[ y_1 = 2 \cdot 1 = 2 \quad \text{and} \quad y_3 = 2^1 = 2 \][/tex]
Here, [tex]\( y_3 = 2 \)[/tex], matching [tex]\( y_1 \)[/tex].
Continuing this process, the exponential function starts growing faster. The exponential function [tex]\( y_3 \)[/tex] surpasses the linear function [tex]\( y_1 \)[/tex] immediately after this point. Therefore, the [tex]\( y \)[/tex]-value at which [tex]\( y_3 \)[/tex] surpasses [tex]\( y_1 \)[/tex] as we increase [tex]\( x \)[/tex] is:
[tex]\[ \boxed{1} \][/tex]
### Comparison with the Quadratic Function [tex]\( y_2 = 2x^2 \)[/tex]
Next, we compare the exponential function [tex]\( y_3 = 2^x \)[/tex] with the quadratic function [tex]\( y_2 = 2x^2 \)[/tex].
- At [tex]\( x = 0 \)[/tex]:
[tex]\[ y_2 = 2 \cdot 0^2 = 0 \quad \text{and} \quad y_3 = 2^0 = 1 \][/tex]
Here, [tex]\( y_3 = 1 \)[/tex] when [tex]\( y_2 = 0 \)[/tex].
- Increase [tex]\( x \)[/tex] incrementally, we reach [tex]\( x = 1 \)[/tex]:
[tex]\[ y_2 = 2 \cdot 1^2 = 2 \quad \text{and} \quad y_3 = 2^1 = 2 \][/tex]
Here, [tex]\( y_3 = 2 \)[/tex], matching [tex]\( y_2 \)[/tex].
As the values of [tex]\( x \)[/tex] increase further, the exponential function [tex]\( y_3 \)[/tex] starts to surpass the quadratic function [tex]\( y_2 \)[/tex]. Therefore, the [tex]\( y \)[/tex]-value at which [tex]\( y_3 \)[/tex] surpasses [tex]\( y_2 \)[/tex] immediately after this point is:
[tex]\[ \boxed{1} \][/tex]
### Identifying the Fastest Growing Function
Among the three functions [tex]\( y_1 = 2x \)[/tex], [tex]\( y_2 = 2x^2 \)[/tex], and [tex]\( y_3 = 2^x \)[/tex], the exponential function grows the fastest. This is because exponential growth increases more rapidly than both linear and quadratic growth as [tex]\( x \)[/tex] increases.
Thus, the function that grows the fastest is:
[tex]\[ \boxed{\text{the exponential function}} \][/tex]
In summary:
- The exponential function [tex]\( y_3 \)[/tex] surpasses the linear function [tex]\( y_1 \)[/tex] at [tex]\( y = 1 \)[/tex].
- The exponential function [tex]\( y_3 \)[/tex] surpasses the quadratic function [tex]\( y_2 \)[/tex] at [tex]\( y = 1 \)[/tex].
- The exponential function grows the fastest.
Thank you for contributing to our discussion. Don't forget to check back for new answers. Keep asking, answering, and sharing useful information. Thank you for visiting IDNLearn.com. For reliable answers to all your questions, please visit us again soon.